Tota	I Nu	Imber of Pages : 02	B.Tec PCE4I00						
		4 th Semester Regular / Back Examination 2018-19	024100						
		CHEMICAL ENGINEERING THERMODYNAMICS							
	210	BRANCH : CHEM 210 210 210 210 210 210 210							
	210	lime : 3 Hours							
		Max Marks:70 Q.CODE:F481							
		Answer Question No.1 which is compulsory and any five from the rest	t.						
		The figures in the right hand margin indicate marks.	-						
Q1		Answer the following questions :	(2 x 10)						
	-	State the limitations of first law of thermodynamics wit example! ⁰							
	b)	An egg, initially at rest, is dropped onto a concrete surface and breaks. With the egg treated as the system, what is the sign of W, Q and ΔE_p .							
	C)	Calculate ΔU and ΔH for 1 kg of water when it is vaporized at the constant							
		temperature of 373.15 K and the constant pressure of 101.325 kPa. The							
		specific volumes of liquid and vapour water at the conditions are 0.00104 and 1.673 m ³ kg ⁻¹ . For this change, heat in the amount of 2256.9 kJ is added to the							
	210	water							
	d)	One mole of an ideal gas is compressed in a piston cylinder assembly from							
		the initial state 0.1MPa and 300 K till its volume is reduced to 1/15 of the							
		original volume. The process of compression can be approximated as a polytropic process with n=1.2. Determine the final temperature, pressure and							
		work done on the gas.							
	e)	State Kelvin-plank and Clausius statement of second law of thermodynamics.							
	f)	Define partial molar properties of a component in a solution.							
	g) ⁰								
	h)								
	i)	State third law of thermodynamics.							
	j)	Write the effect of temperature on equilibrium constant in a reaction mixture.							
Q2	a)	With neat sketch explain the PT and TV diagram of pure substance.	(5)						
	b) 210	Reported values for the virial coefficients of isopropanol vapor at 473.15K (200°C) are: ²¹⁰ 210 210 210 210 210	(5)						
		$B=-0.3888m^{3}kmol^{-1}$							
		$C = -26 \times 10^{-3} \text{ m}^{6} \text{ kmol}^{-2}$							
		Calculate V and Z for isopropanol vapour at 473.15K (200°C) and 10 bar							
		by:							
		 (i) The ideal gas equation (ii) Virial equation with 2nd term 							
	210								
	_								
23	a)	Derive the expression of Gibbs Duhem equation for a solution containing multi component mixture.	(5)						
	b)	The molar enthalpy of a binary solution at constant T and P is given by the	(5)						
		relation							
		$h=500x_1+1000x_2+(50x_1+40x_2)x_{12}$							
	210	where h is in J/mol. Determine \bar{h}_1 and \bar{h}_2 as function of x_1 and the numerical values of the pure component h_1 and h_2 . Also determine the partial molar							
		enthalpies at infinite dilution.							

210	•	210	210	210	210	210	210	(-)	210
	Q4	a) b)	Write the effect of oper A system formed initial reactions $CO_2 + 3H_2 \rightarrow 0$	Ily of 2 mol CC $CH_3OH + H_2O$				(5) (5)	
			$CO_2 + H_2 \rightarrow C$ Develop expressions for of the reaction coordina	or the mole fra		acting species	as function		
10	~-	210	210	210	210	210	210	(=)	210
	Q5	a)	Derive the expression mixture which obeys V				ponent in a	(5)	
		b)	Calculate the fugacity at 427.85 K and 0.215 equation of state. The $Pa(m^3/mol)^2$ and 2.37×	nder Waals	(5)				
10	Q6	210	Air is compressed from final state of 5 bar a reversible processes in (a) Heating at con (b) Isothermal con (c) Adiabatic comp	and 298.15K a closed syst stant volume f pression pression follow	(25°C) by threem: ollowed by cool wed by cooling a	ee different m ling at constant at constant volu	echanically pressure me	(10)	210
10		210	Assume air to an idea $C_p=(7/2)R$. Calculate the internal energy and er bar the molar volume of	he work requine the required the required to the required totte to the required to the required to the required to the require	red, heat transf air for each pro	erred and the	changes in ₂₁₀		210
	Q7		Mixtures of Benzene (The vapor pressures Antoine equation. Prep (a) P-x-y diagra	of pure compo are				(10)	
210		210	(b) T ₂ x ₀ y diagra	im at a pressu			C 210		210
			Benzen Tolune	constant e	A 6.87987 6.95087	B 1196.760 1342.310	219.161 219.187		
	Q8	a) b)	Write short answer or Virial equation of state Carnot cycle & Carnot	-				(5 x 2)	
10		c) d)	Accentric facor Chemical Potential	210	210	210	210		210
10		210	210	210	210	210	210		210
10		210	210	210	210	210	210		210