I	Regis	tration No :					
Tota	al Nu	mber of Pages : 03	210	210	210	210 B	3.Te
						PME	-
		4 ^m Se	•	ar / Back Examir NSM & MACHIN			
				ANCH : MECH	23		
				x Marks : 100			
				me : 3 Hours			
۸ne	210	210 Ducation No 1 (Par		CODE : F850	210 aight from Par	210 t II and any two	fr
Ans	swer	Question No.1 (Par	t-1) which is c	Part-III.	eight from Par	t-ii and any two	
		The fia	ures in the ria	ht hand margin	indicate marks		
~ .				Part-I			•
Q1	2)	Only Short Answer Why ackerman stee		· ,	h over the davie	•	2 x
	a) 210	mechanism. ²¹⁰			210 210		
	b)	How many times the	speed of driven	shaft becomes eq	ual to the speed o	of driving shaft	
	,	connected by a hook	•		•	0	
	C)	How can the interference		-			
	d)	What is meant by co			-		
	e)	What will be the eff					
	A 0	clockwise direction w				210 rom the top?	
	≇f) g)	What is the function What is meant by pre-	-			210	
	9) h)	Using revolving mas	-			cating masses	
	,	is balanced. Why?	o only a part of a				
	i)	Define logarithmic de	ecrement.				
	j)	Explain the term 'wh	irling speed' and	'critical speed' of a	a shaft.		
	210	210	210	Part- III 0	210	210	
Q2		Only Focused-Shor	t Answer Type	Questions- (Ansy	wer Any Eight ou	ıt of Twelve) ((6 x
	a)	Determine the maxim	•	-			
		joint, if the driving sh the total fluctuation of					
		maximum and minim					
	b)	Draw the displacement				when it moves	
	210	with uniform accelera	010	010	010		
	c)	A punching press is					
		the rate of 20 holes punching takes place					
		to 160 rpm, determin					
	d)	Two 20 [°] involute spu	r gears have a n	nodule of 10 mm.	The addendum is	s equal to one	
		module. The largest		eth while the pini	on has 20 teeth.	Will the gear	
		interfere with the pin					
	210			210	210		

210		e) 210	An aircraft consists of an engine of mass moment of inertia 150 kg-m ² . The engine rotates at 3600 rpm in a sense clockwise looking from the rear. The aircraft completes half circle of radius 100m flying at 360 km/hr_Determine the gyroscopic couple on the aircraft and state its effect if the aircraft (i) Turns towards left. (ii) Turns towards right.	210
		f)	Calculate the minimum speed and maximum speed of a porter governor which has equal arms each of 200 mm long and pivoted on the axis of rotation. The mass of each ball is 4 kg and the central mass on the sleeve is 20 kg. The radius of rotation of the ball is 100 mm when the governor begins to lift and 130 mm when the governor is at	
210		210	maximum speed. 210 210 210 210	210
		g)	 The mass of turbine rotor of a ship is 8000 kg and a radius of gyration 0.6 m. It rotates at 1800 rpm clockwise when looking from the stern. Determine the gyroscopic couple and its effect in the following cases (i) The ship travelling at 100 km/hr steers to left in a curve of 75m radius. (ii) If the ship is pitching and the bow is descending with maximum velocity. The pitching is simple harmonic motion with time period of 20 seconds and total angular movement between the extreme positions is 20^o. 	
210		h) 0	Draw the controlling force diagram of a Hartnell governor and describe about stable, unstable and isochronous governor.	210
		i)	What is the condition for correct steering? Sketch and show the two main types of steering gears and discuss their relative advantages.	
210		j) 210	A shaft is rotating at a speed of 240 rpm. Four masses of magnitude 100 kg, 150 kg, 120 kg and 130 kg respectively are rigidly attached to the shaft. The masses are rotating in the same plane. The corresponding radii of rotation are 400 mm, 300 mm, 500 mm and 600 mm respectively. The angles made by these masses with horizontal	210
210			 are 0, 45, 120 and 255 respectively. Find (i) The magnitude of the balancing mass. (ii) The position of the balancing mass if the radius of rotation is 400 mm. 	210
		k)	A single cylinder reciprocating engine has the following data: Speed of engine= 120 rpm; stroke= 320 mm; mass of reciprocating parts= 45 kg and mass of revolving parts= 35 kg at crank radius. If 60% of the reciprocating parts and all the revolving parts are to be balanced, the find:	
210		210	 (i) The balancing mass required at a radius of 300 mm. (ii) The unbalance force when the crank has rotated 60 from top dead centre. 	210
		I)	Find the logarithmic decrement and the ratio of any two consecutive amplitude of a vibrating system, which consists of a mass of 3.5 kg, a spring of stiffness 2.5 N/mm and a damper of damping co-efficient 0.018 N-s/mm.	
			Part-III	
0.1.0		0.1-5	Only Long Answer Type Questions (Answer Any Two out of Four)	
210	Q3	a) ⁰	The turning moment diagram for a multi cylinder engine has been drawn to a scale of 1 mm = 4500 Nm vertically and 1 mm = 2.4 horizontally. The intercepted area between output torque curve and mean resistance line taken in order from one end are 342, 230, 245, 303, 115, 232, 227, 164 mm ² , when the engine is running at 150 rpm. If the mass of the flywheel is 1000 kg and the total fluctuation of speed does not exceed 3% of the mean speed, find the minimum value of radius of gyration.	(8) ²¹⁰

. . .

 transmits 1.5 kW to is 1/4 of the circula (i) The length of p (ii) The length of a A cam with a minin the following data: To raise the follow Dwell for next 40 o Descending of the Dwell during the re Draw the profile of and the line of stro What is the maxim descent if the cam A hartnell governo mm in the mean posileeve is rising. The 90 mm. The stiffne from the mean positions. Neglect of the positions. Neglect of the positions. Neglect of the terms: Define the terms: A body of mass 50 motion of the bod 	rc of approach. hum radius of 25 mm of the cam rotation. follower during the est of the cam rotation the cam if the asce ke of the follower is hum velocity and ac rotates at 150 rpm? r has two rotating be position, when the ball so of the spring is 7 sition. Allowing for a the speed range obliquity of arms. vibration isolation esonance. 0 kg is supported by y is controlled by a)th of its original value	ing 50 teeth. The f obliquity is 20. F during 60° rotation next 90° of the ca on. ending and desc 10 mm offset from celeration of the alls of mass 2.7 lls are vertical ar arm is 140 mm kN/m and the to a constant friction of the governor and transmissib and transmissib by an elastic stru- a dashpot such	e addendum on be Find 210 ed for a knife-edg a of the cam. am rotation. cending of the can m the axis of the follower during t kg each ₁₀ The ba and length of the tal sleeve movem onal force of 14 N at lowest and I wility. Derive the cture of stiffness that the amplitud	oth the wheels 210 ge follower with 210 m is with SHM cam shaft. the ascent and II radius is 125 50 rpm and the e sleeve arm is nent is ±12 mm N acting at the highest sleeve expression for 10 kN/m. The de of vibration	 (8) 21 (16) 21 (16) 21 (8) 21 (8)
 the following data: To raise the follow Dwell for next 40 o Descending of the Dwell during the re Draw the profile of and the line of stro What is the maxim descent if the cam A hartnell governo mm in the mean posleeve is rising. Th 90 mm. The stiffne from the mean posleeve, determine positions. Neglect of transmissibility at re Define the terms: transmissibility at re A body of mass 50 motion of the bod decreases to (1/10 (i) Damping force 	rer through 35 mm d of the cam rotation. follower during the est of the cam rotation the cam if the asce ke of the follower is num velocity and ac rotates at 150 rpm? Thas two rotating bas osition, when the ball so of the spring is 7 sition. Allowing for a the speed range obliquity of arms. Vibration isolation esonance. D kg is supported by y is controlled by a oth of its original value	during 60° rotation next 90° of the ca on. ending and desc 10 mm offset from celeration of the alls of mass 2.7 Ils are vertical ar arm is 140 mm kN/m and the to a constant friction of the governor and transmissib by an elastic stru- a dashpot such	am rotation. am rotation. cending of the car m the axis of the follower during t kg each. The ba and length of the tal sleeve movem onal force of 14 N at lowest and l ility. Derive the cture of stiffness that the amplitud	210 m is with SHM cam shaft. the ascent and II radius is 125 50 rpm and the e sleeve arm is nent is ±12 mm N acting at the highest sleeve expression for 10 kN/m. The de of vibration	21 (16) 21 (8) 21
 mm in the mean posleeve is rising. The 90 mm. The stiffne from the mean posleeve, determine positions. Neglect (1) Define the terms: transmissibility at motion of the bod decreases to (1/10 (i) Damping force 	osition, when the ball ie length of the ball ss of the spring is 7 sition. Allowing for a the speed range obliquity of arms. vibration asolation esonance. 0 kg is supported b y is controlled by a)th of its original value.	Ils are vertical ar arm is 140 mm kN/m and the to a constant frictio of the governor and transmissib y an elastic stru- a dashpot such	nd the speed is 18 and length of the tal sleeve movem onal force of 14 N at lowest and I nility. Derive the cture of stiffness that the amplitud	50 rpm and the e sleeve arm is nent is ±12 mm N acting at the highest sleeve expression for 10 kN/m. The de of vibration	(8) 21
 transmissibility at r A body of mass 50 motion of the bod decreases to (1/10 (i) Damping force 	esonance.) kg is supported b y is controlled by a)th of its original valu	y an elastic stru a dashpot such	cture of stiffness that the amplitud	10 kN/m. The de of vibration	
	actor.		piete vibrations. L	Jetermine	
(iii) The natural new 10 210	quency of damped v 210	210	210	210	21
10 210	210	210	210	210	21
10 210	210	210	210	210	21

210 210	210	210	210	210	210	2
---------	-----	-----	-----	-----	-----	---