0		210	210	210	210		210	210	210
	Registration No :								
	Tota	l Nur	mber of Pages : 02	2					B.Tech
0	210		E	Max Tin Q.0	REACTION CH: BIOT Marks: 1 ne: 3 Hour CODE: F48	ENGINE ECH 00 rs 30	ERING	210	3T4I104 210
	An	swer	Question No.1 (P		compulsor om Part-III		GHT from P	art-II and any	TWO
0		210	² The fig	gures in the righ	0.10		cate marks.	210	210
0	Q1	a) b) c) d)	Only Short Answe What is Ideal batch Define enthalpy of r Write the half life per State adiabatic flam	reactor? reaction? eriod of a 2 nd order ne temperature?		.II-10)	210	210	(2 x 10)
0		e) f) g) h) i)	What is activation e Differentiate betwee What is Psychomet What is mixed flow Explain the term ch What do you unders	en order and moled ric charts? Write its fermenter? emical kinetics.	cularity of resapplication	1?	210	210	210
0	Q2	210 a) b)	Only Focused-Sho Discuss methods operation affects the Write the equation f	of producing in a sinetics.	mmobilised	enzyme	systems a	and how its	(6 x 8) ²¹⁰
	c) Explain CSTR and plug flow reactors and their use for kinetic interpretatio								
		d)	Discuss with examp	oles classification o	of reactions?	•			
0		e) 0	Derive performance	e equation for a plu	g flow react	or?	210	210	210
		f) g)	A tank contains weat 500 kg of 50% H ₂ s contains 20% H ₂ S made up? Discuss about react	SO_4 (by weight) a O_4 (by weight), ca	re added to	the tank	andthe final	acid solution	
		h)	Write a note on use		ni-log graph	paper.			
0		4)° j)	A liquid phase read stream consists of space time is requir constant is 0.00/m³l Discuss the working	ction A+B ²¹³ C+D to 5kmol/m³ of A ar red to obtain 60% kmol/sec at reactio	akes place and 100 kmo conversion necessity	in a CSTF ol/m³. Wha of limiting	at volumetric	flow rate and	210
		k)	Briefly explain graph	hical differentiation	and graphi	cal integra	tion.		
0		l) 210	Explain the tempera	ature dependency	of reaction f	rom collisi	on theory.	210	210

210		210		210	210		210		210		210	210	
						Pa	art-III						
	Only Long Answer Type Questions (Answer Any Two out of Four)												
210	Q3 Q4		Discuss in details the construction and working principle of packed bed reactorand fluidized bed catalytic reactors?							(16)			
		210								210 (16)			
			kinetic models for nonelementary reactions								(16)		
	Q5		What are autocatalytic reactions? Give examples. Derive integrated rate expression for an auto catalytic reaction.										
210	Q6	210	Write the kinetics.	equation o	f porous	spherical	surface 210	solid	catalyst 210	following	first order	(16) 210	
210		210		210	210		210		210		210	210	
210		210		210	210		210		210		210	210	
210		210		210	210		210		210		210	210	
210		210		210	210		210		210		210	210	
210		210		210	210		210		210		210	210	
010		0.1.0			0.10		0.1.0		0.10		040	0.10	