210	210	210	210	210	210	210	210
	Registra	ation No :					
210	Total Nu	umber of Pages : ()2 210	210	210	210 B.Te BSCM12	210
		4 ^{tt}		k Examination	2018-19	DOCIMIT2	. 10
			ANCH: AERO,	EMATICS- IV AUTO, BIOME FAT, MANUFA		1,	
		MARINE,	•	A, MME, PE, PL e : 3 Hours	ASTIC, TEXTIL	.E	
210	210	210	²¹⁰ Max	Marks ¹ ? 70	210	210	210
		Answer Question The figu	No.1 which is	DDE : F1009 compulsory ar t-hand margin i	•		
	Q1	Answer the follow				(2 x	10)
	a)	Round-off the num percentage error.					010
210	210 b)	What is Truncation		210	210	210	210
	c)	Write using Lagrar to obtain a polynon			s or arguments a	re required	
	d)	Let $\frac{dy}{dx} = -2xy$, $y(0)$ value of $y(0.4)$?	•		by Euler's meth	od find the	
	e)	A continuous $(k(1 - x) - f)$	random varia	able X has	probability	distribution	
210	210	$f(x) = \begin{cases} k(1-x), f \\ o, Els \end{cases}$	ewhere	at is the value of	<i>k</i> . ²¹⁰	210	210
	f) a)	Define Linear Inter Define Type-1 and		ampling distributi	on		
	9) h)	State two difference					
	i)	Write down the ran	-		m a lat of 10 ma		
	j)	We want to draw ra which 3 gaskets a					
210	210	variable \hat{X}^0 = Num without replacement		in the sample, it	f we perform the	e operation	210
	Q2 a)	Using Bisection me)
	b)	Using Newton-Rap three iterations) x^2		mulate the real r	roots of the equa	ation (up to (5)
210	Q3:10 a)	Calculate mean an density				probability (5	210
			$f(x) = \begin{cases} \frac{3}{2}(1-x) \\ 0 \\ 0 \end{cases}$	- x ²), for 0 < 2 elsewhe	x < 1 ere		
	b)	Calculate probabili probabili	ty distribution fur	nction for a contin	uous random va	riable <i>x</i> with (5))
210	210	210	$f(x)^{210} = \begin{cases} \frac{3}{2}(1) \\ 0 \end{cases}$	$(-x^2), for \ 0 < x$ elsewhere	< 1 210	210	210

210	210	210	210	210	210	210	21

Q4 a) Evaluate f(1.2) by using Newton's forward difference interpolation formula for (5) given tabulated values.

	X	0	1	2	3	4
f(X) 1 1.5 2.2 3.1 4.3	f(x)	1	1.5	2.2	3.1	4.3

210

	210	210	210
b)	Formulate $f(1.5)$	for given tabulated	points.

x	0	1	3	4	
f(x)	-12	0	6	12	

010

Q5 a) Calculate the correlation coefficient for the following heights (in inches) of fathers (X) and their sons (Y) (5)

x	65	66	67	68	69	70	71	72
у	67	68	65	68	72	72	69	71

b) Calculate the mean and standard deviation of the sampling distribution of mean of 300 random samples of size n = 36 are drawn from a population of N = 1500 which is normally distributed with mean $\mu = 22.4$ and standard deviation $\sigma = 0.048$, if sampling is done (a) with replacement (b) without replacement

Q6 Evaluate a parabola $y = ax^2 + bx + c$ in least square sense to the following (10) data

	x	10	12	15	23	20
)	Y ²¹⁰	14 ²	10 17	²¹⁰ 23	25	21 ²¹⁰

Q7 Evaluate y(1.3) by using Runge-Kutta method of order 4 for initial value problem (10) $\frac{dy}{dx} = x^2 + y^2, y(1) = 0$ by taking h = 0.1.

 Q8
 Write short answer on any TWO :
 (5 x 2)

 210 a)
 Show that, in Binomial distribution variance is greater than mean.
 210

 b)
 Write down the methodology involved in finding the roots of equation numerically.
 210

c) Write down the characteristics of Normal distribution.

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210	210	210	210	210	210	210	210

....

(5)