10	210	210	210	210	210	210	210
	Deviet						
	Regist	ration No :					
	Total N	umber of Pages	: 03			B.Tec	h
10	210	210	210	210	210	21 PCME420	4 210
		171	4 th Semester Ba				
		NI NI	NEMATICS AND BRANC	H : AUTO, ME			
				ne : 3 Hours			
				x Marks : 70			
10	210	Answer Questi	210		and any FIVE fro	210 m the rest	210
					in indicate marks		
	Q1	Answer the foll	owing questions :			(2 x 10)	
	a)	What do you me	ean by degree of f	freedom of a m	echanism? Explair	· · · ·	
	b)		ermining degree of	•	lanner mechanism. / with the help of	quitable	
10	210 b)		ersion of double sli			210	210
	c)		mean by Instantar		rotation? State ar	nd prove	
	d)	What is the ma	ain limitation of a		How the limitation	can be	
	e)	overcome in her	ringbone gear? e the correction cou	inle is annlied?			
	f)	What is a clutch			ice between a bral	ke and a	
10	210 a)	clutch? 210 Explain briefly al	210 bout the terms i) frie	210 ction circle and	210	210	210
	g) h)	•	,		and name the me	echanical	
	i)		ere this theory is us	-	ion capacity of a be	lt drive if	
	IJ	flat belt is replac			on capacity of a be		
	j)	Explain with figu	re about belt transr	mission dynamo	ometer.		
210	Q2 a)	What do you	mean by Coriolis	210 acceleration	Prove that the	Coriolis (5)	210
					s, where you will ketch the kinematic	find the	
		of a windshield	wiper mechanisn		iger car and find	-	
	b)	degrees of freed		pefficient of flu	uctuation of speed	l and ii) (5)	
	5,	Coefficient of flu	ctuation of energy.	Explain the pro-	ocedure to construc		
10	210	moment diagran	n of a four stroke I.(C. engine _{io}	210	210	210
	Q3 a)	•		•	system? State the i		
		force.	such system for de	etermining the	line of action of th	ne inertia	
	b)				meter of 120 mm ar		
		The mass of the	piston is 1.2 kg. T	he speed of the	een the centers is a e engine is 1500 rp	m. In the	
10	210				d center, the gas pronucting rod and t		210
		effort.					
		ettort.					

210	210	210	210	210	210	210	2

Q4 a	a)	A conical pivot supports a load of 22.5 kN. The cone angle being 120 ⁰ , and the intensity of normal pressure is not to exceed 0.25 MPa. The external diameter is twice the internal diameter. Find the inner radius and outer radius	(5)
210		of the bearing surface. If the shaft rotates at 3 rps and the co-efficient of friction is 0.15, find the power lost in friction, assuming uniform wear.	

- A band and block brake, having 12 blocks each of which subtends an angle of b) 12⁰ at the centre, is applied to a drum of 1.2 m effective diameter. The drum and flywheel mounted on the same shaft has a mass of 1800 Kg and have a combined radius of gyration of 45 cm. The two ends of the band are attached to pins on opposite side of the brake lever at distances of 4 cm and 12 cm from the fulcrum. If a force of 200 N is applied at a distance of 100 cm from fulcrum, find
 - i) Maximum braking torque,
 - ii) Angular retardation of the block,

Time taken by the system to come to rest from the rated speed of 360 r.p.m., µ=0.25

- Q5 a) Describe with the help of neat sketch the principles of operation of an internal expanding shoe brake. Derive an expression for the braking torque in terms of applied effort exerted by cam. Neglect the pull on the spring used to keep the brake shoes in position.
 - A pulley is driven by a flat belt of 120 mm wide and 10 mm thick. The b) (5) allowable strength of belt material is 2.25 MPa. The density of the belt material is 1250kg/m³. The angle of lap is 120⁰ and the coefficient of friction is 0.25. Considering the centrifugal tension, determine the maximum power that can be transmitted by the belt drive.

Figure $\mathbf{1}^{210}$

(5)

(5)

210	210	210	210	210	210	210	210		
	Q7					(10))		
210	210	210		F	210	210	210		
210	210	210			D	210	210		
					Figure - 2				
210	210	210	210	210	210	210	210		
210	210	b) The gea	d gears B and C t the axis O. The all the gears are $32 \text{ and } Z_G = 32$ d of D if r E is fixed and a r E rotates at 9	c as well as intern e gears F and G r e of same module	al gears D and E otate on the pins . The number of t t number of teeth 50 rpm. clockwise direct	rotates fixed to eeth on	210		
	Q8	Write short answe	•			(5 x	2)		
210	a) 210	, , , , , , , , , , , , , , , , , , , ,							
	b)	What do you mean any given crank pos plate clutch?							
	c)								
210	210	210	210	210	210	210	210		