	210	210	210	210	210	210	210
	Regis	stration No :					
	•						
Tot	al Nu	mber of Pages : 02				D(B.Tech CE4I102
	210	210 4th Sen	nester ₂ Regular	· / Back₁Exami	nation 2018-19	210	210
				CH : CHEM, PT Marks : 100			
			Tim	e: 3 Hours			
Aı	nswe	r Question No.1 (Par		ODE : F845 compulsorv. ar	v EIGHT from F	Part-II and any	/ TWO
	210	-	fro	om Part-III.	-	-	210
	210	The figu	res in the righ	t hand margin	indicate marks		210
				Part- I			
21	a)	Only Short Answer T Why fins are used? W				lvsis.	(2 x 10)
	b)	Mention the value of	of Nusselt num	per for constan	t heat flux and		
	C) 210	temperature case in tu What is the difference				mal boundary	
	210 d)	layer? How these are What do you mean b				210 -	210
	u)	developed condition.					
	e)	Find the shape facto having same length ar		of the following	triangular cavity.	All sides are	
		naving same longer a		^			
	210	210	210 3	2	210	210	210
	f)	Define Rayleigh numb	er Give its signi	1 ficance			
	g)	Write down the application	ations of boiling I	neat transfer.			
	h) i)	Why are counter flow Snow is a black body.		mostly-used col	mpared to parallel	flow type?	210
	j)	What is the critical ins	ulation radius wh	nen k=0.50 W/mł	K and h=10 W/m ² K	?	
				Part- II			
2	a)	Only Focused-Short Derive critical insulation			wer Any Eight ou	it of Twelve)	(6 x 8)
	b)	Air is flowing over a fla	at plate 5 m long	and 2.5 m wide	with a velocity of 4	4 m/s at 15°C.	
	210	If density is 1.208 kg/r i) length of plate o					210
		boundary layer (la ii) shear stress at the	,	boundary layer	reases to be lamin	ar	
		iii) total drag force or					
		laminar.					
	C)	A vertical cylinder 1.5					
	210	atmosphere2 environm surface of the cylinder	. Assume proper	ties of air at mea			210
		$v=19\times10^{-6} m^2/s, c_P=1.0$	004 kJ/kgK and p	or=0.7.			

210		210	210	210	210	210	210	210					
		d) e)	Water (c_P =4.2 kJ/kg K (c_P =1.9 kJ/kg K) enter exchanger. If U ₀ =350 V Differentiate between r	ering at 110°C V/m²K, calculate	and leaving at the surface area	60 °C in a co required.	unterflow heat						
		f)											
210		g) h)	Define the following ter (i) Thermal diffusivity Explain Boiling curve w	rms:210 (ii) Biot nun	210	210 selt number	210	210					
		, i) j)	What do you mean by both for flow over a flat Differentiate between	y thermal bound t plate.		draulic boundar	y layer? Draw						
		<i>i</i> , k)	Classify and explain di										
210		210 1)	Classify and explain di		0.1.0	210	210	210					
					Part-III								
			Only Long Answer Ty	ne Questions		out of Four)							
	Q3		Name and explain brie	-	. 2			(16)					
210		210	A 0.8 m high and 1.5 m wide double-pane window consists of two 4 mm thick layers of glass(k=78W/m K) separated by a 10 mm wide stagnant air space (k=0.026 W/mK). Determine the rate of heat transfer through this window and temperature of inside surface, when the room is maintained at 20°C and the out side air is at -10°C. take the convection coefficient on the inside and out side surfaces of the window as 10 and 40 W/m ² K respectively. Find the overall heat transfer coefficient.										
210	Q4	210	Steam enters a counter flow heat exchanger, dry saturated at 10 bar and leaves at 350°C. The mass flow of stream is 800 kg/min. The gases enter the heat exchanger at 650°C and mass flow rate is 1350 kg/min. If the tubes are 300 mm diameter and 3 m long, determine the number of tubes required. Neglect the resistance offered by metallic tubes.										
210	Q5	210	Two parallel gray plane and 1500 [°] C. What is th heat transfer if a radia them?	ne net radiant ei	nergy exchange? \	What would be t	he reduction in	(16) 210					
	Q6		Derive general heat conduction equation in Cartesian coordinates.										
			A stainless fin (k=20 W of 300 ⁰ C. the ambien 10 W/m ² K. The fin tip is a) The rate of heat di	nt temperature s insulated. Dete	is 50ºC and the ermine								
210		210	b) The temperature ac) Fin efficiencyd) Fin effectiveness	0.10	210	210	210	210					
210		210	210	210	210	210	210	210					