21	10	210	210	210	210	210		2
Re	gistra	ation No :						
Tot	al Nu	Imber of Pages	: 02				B.Tech	
2	10		Tir Ma	G THERMOD ANCH : MECH ne : 3 Hours x Marks : 70 CODE : F902	YNAMICS I	210	CME4205	2
21	10		gures in the rig	•	-			2
Q1	a) b) c) d)	What do you mea What is a dead s What is cogenera and cycle efficien	owing questions an by second law tate? Mention the ation? What is its ncy? ween availability ar	efficiency? significance of effect on mear	n temperature		(2 x 10)	
2	() () () () () () () () () () () () () (Mention advantag Compare Otto an fixed. Derive the express Why Carnot cycle What is a tone of	ge of multistage of nd Diesel cycles I ssion for change in e is not applicable	ompression ove keeping maxim n entropy for ide for thermal pov	er single stage um pressure a eal gas using s ver plant?	and temperature		2
Q2	¹⁰ a)	exchanger (flash evaporator and c capacity of the p compression and what would have is the percentag	our compression r n chamber) opera condenser tempera plant is 30 tonnes d the COP. Had the been the percen je increase in CC	ates with amm atures are -30° s of refrigeration tage increase i	nonia as the C and 40ºC re on, estimate t n been done in n work of con	refrigerant. The spectively. If the he total work of n a single stage, ppression? What		
21	¹⁰ b)	process? ₂₁₀ Explain the worki	ing principle of var	oour absorption	cycle with a r	neat diagram. ²¹⁰	(5)	
Q3		and rejects 544 beginning of com compression ratio	ng on the Otto cyc kJ/kg of air. Th npression are 0.11 o of engine, (b) the he end of compre	ne pressure and MPa and 60°C ework done pe	nd temperatur respectively. r kg of air (c) t	re of air at the Compute (a) the the pressure and		
2	¹⁰ b)	Compare ² Brayto	on cycle with Otto ting engines and to	•	ering their ²¹ ap	plications in the	(5)	
Q4	a)	400°C and the e contact type which of the cycle and	er regenerative cy exhaust pressure is ch operates at 5 b d (b) the increase steam rate, as	s 0.10 bar. The ar. Find (a) the in the mean	e feed water h e efficiency an temperature of	neater is a direct d the steam rate of heat addition,		
	b)		nermodynamic ad	dvantages obt	ained from	(i) Reheat (ii)	(4)	

210	210	210	210	210	210	210		210
210	Q5 a)	process is (a) adiaba compression processes	atic, (b) pol s need minin	lytropic, and (c) num and maximum	isothermal. Sl works. Use co	how which ommon P-v	(5)	210
210	²¹⁰ b)	A single stage single-ac kPa and 15° C. The pre constant at 98kPa and kPa, R _a =0.287kJ/kg.K. mechanical efficiency i Take the volumetric effi	ssure and te 40 [°] C respe Find (a) the s 0.85, (b) t	emperature during ectively, n=1.22. The power needed to c the swept volume	the suction str he air is delive frive the compr	oke remain ered at 735 ressor if the	(5)	210
210	Q6 ₂₁₀ a)	Derive the following : $C_p - C_v = \frac{TV\beta^2}{k_T}$, where	β and k_{T}	210 are volume ex	210 pansivity and	210 isothermal	(5)	210
	b)	compressibility respecti Expain Joule-Kelvin effe	vely.				(5)	
210	Q7 a) 210	Air expands through a expansion 10kJ/kg of h Neglecting the K.E. and in availability (b) the match kJ/kg K, h=C₀T where C	eat is lost to d P ₂ E, chang aximum work	the surroundings les, determine per (c) the irreversibil	which is at 98 kg of air (a) th	kPa, 20⁰C. e decrease	(5)	210
	b)	Write the working princ develop the expression	iple of a sir	ngle stage reciproc	ating air comp	pressor and	(5)	
	Q8 a) a)	Write short answer on Air Motors Maxwell's Equations	-				(5 x 2)	
210	210 b) c)	Entropy Generation	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210

210 210 210 210 210 210 210	210	210
-----------------------------	-----	-----