
	Regi	istration No :	
Tota	al Nu	imber of Pages : 02	B.Tech
	210	210 210 210 PE	ET4I101 ¹⁰
An	ıswe	4 th Semester Regular / Back Examination 2018-19 ELECTROMAGNETICS ENGINEERING BRANCH : ECE, ETC Max Marks : 100 Time : 3 Hours Q.CODE : F260 er Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any	, TWO 210
		from Part-III. The figures in the right hand margin indicate marks.	210
Q1		Part- I Only Short Answer Type Questions (Answer All-10)	(2 x 10)
	a)	What is the unit of $\nabla \times H$?	
	b) 210	Deduce potential and electric field relations with respect to distance for dipole charge particles. 210 210 210 210	210
	c)	Find α and β for good conductor.	
	d)	In EM wave propagation the component of electric field is given by $E = 10\sin(10^8t - \beta z)a_x \frac{V}{m}$ Find the direction of EM wave.	
	e)	What is the difference between Transmission line and wave guide.	
	f)	If $\nabla g A = 0$ and $\nabla \times B = 0$, then write the behavior of A and B .	
	g)	If one unit magnitude of electric field (V/m) exist on dielectric material of $\varepsilon_r = 2$ then find energy density of the medium.	210
	h)	What do you mean by susceptibility and how it is related to electric field, permeability and flux density?	
	i)	There are two dielectric materials stacked to each other and one is twice times denser than other. If electric field will incident at 45° at the interface then find angle of transmission with interference.	
	j)	Write down cutoff frequency of waveguide where 'a=b' at TM ₁₁ mode.	
	210	210 210 210 210 210 210 210	210
Q2	_	Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)	(6 x 8)
	a)	Given that $E = (3x^2+y)a_x + xa_y KV/m$, find the work done in moving a -2 μ C charge from (0,5,0) to (2,-1,0) by taking straight line path.	
	b)	Explain Uniqueness theorem and implement in mentioned problem. Two parallel conducting planes in free space are at y=0 and y=0.02m and the zero voltage references at y=0.01m. If D =253ay nC/m² between the conductors, determine the	
	210	conductor voltages. 210 210 210 210	210
	c)	Determine \vec{D} at (4,0,3), if there is a point charge -5π mC at (4,0,0) and line charge 3π mC/m along the Y-axis.	
	d)	Two parallel conducting planes in free space are at y=0 and y=0.02m and the zero voltage references at y=0.01m. If D =253ay nC/m ² between the conductors, determine the conductor voltages.	
	e)	A 10 C/mcharge distribution aligned along'Z' axis in infinite length of wire. Find out electric field intensity at (0,6,0).	

210 210 210 210 210 210 210

out magnetic field at (0,6,0).

f) A 10mA current passing through on infinite length of wire aligned along 'Z' axis, Find

