$\oint_{C:|z|=2} \frac{z}{(z^2-9)(z+i)} dz$

Calculate Laurent series of $f(z) = \frac{2}{z^2 + 5z + 6}$ valid for 2 < |z| < 3.

$$\oint_{C:|z|=2} \frac{e^z}{z(z-1)^2} dz$$

- Approximate the integral of $f(x) = e^{-x}$ on the interval [0,2] using trapezoidal rule e) usingh = 0.2
- If z is normally distributed with mean 0 and variance 1, find $P(z \ge -1.64), P(-1.96 \le$ f) $z \le 1.96$, $P(z \le 1)$, $P(z \ge 1)$.
- Formulate f(1.5) for given tabulated points. g)

х	0	1	3	4
f(x)	-12	0	6	12

- Calculate the value of y(0.4) by using Euler's method for h) $\frac{dy}{dx} = -2xy, y(0) = 1, h = 0.2$ and compare the result with its actual value.
- i) Design a parabola $y = ax^2 + bx + c$ in least square sense to the following data

x	10	12	15	23	20
Υ	14	17	23	25	21

- Calculate residues at the poles for the given function $(z) = \frac{z^2 + 9z 2}{(z^2 + 9)^2(z 1)}$. **j)** 210
- k) Determine probability distribution function for a continuous random variable x with probability density

$$f(x) = \begin{cases} \frac{3}{2}(1-x^2), & \text{for } 0 < x < 1\\ 0 & \text{elsewhere} \end{cases}$$
 . Hence find $F(x < 0.3)$ and $F(0.4 < x < 0.6)$.

Evaluate f(1.2) by using Newton's forward difference interpolation for given tabulated I) values.

210	x 210	0	²¹⁰ 1	210 2	21 3	4 10	
	f(x)	1	1.5	2.2	3.1	4.3	

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

Q3

a)

Prove that

$$\int_0^{2\pi} \frac{d\theta}{5 + 3\sin\theta} = \frac{\pi}{2}$$
 210 210

(10)

- Discuss Taylor's series of $f(z) = \frac{2}{(z+3)(z+4)}$ in the region |z+1| < 1. (6)
- Q4 Classify a polynomial for given tabulated values. Hence find y(0.5) and y'(0.5). (16)3
- Evaluate y(1.3) by using Runge-Kutta method of order 4 for initial value problem Q5 (16) $\frac{dy}{dx} = x^2 + y^2, y(1) = 0$ by taking h = 0.1.
- Q6 Using a sample of 10 values with mean 14.5 from a normal population with variance (16)0.25, test the hypothesis $\mu_0 = 15.0$ against the alternative $\mu_1 = 14.5$ on the 5% level.