	210	210	210	210	210	210		210
	Registra	ntion No :						
210	Total Nu	mber of Pages :	01 ²¹⁰	210	210	210 PC	B.Tech EC4202	210
				CTRONICS CI SE, ECE, EEE		ſ, ITE		
210	210		Max 210 Q.CC n No.1 which is o		210 and any five from indicate marks.	²¹⁰ the rest.		210
210	Q1 a) b) c) 210 d) e) f) g) h)	Write the applicat How "fan-in" and " Draw the block dia Convert (306.D) ₁₆ How sequential ci State the basic M Write a module fo	erstand by "cell adj ions of state machi "fan-out" are differe agram for construc to (nes. ent from each of tion of a full add d using the num es in VLSI. IDL.	ther? der using half-adder	s. 210	(2 x 10)	210
210	i) j) Q2 a) b)	Between 1's and more preferred an ²¹⁰ Write the steps for an example. Differentiate betw	nd why? ²¹⁰ or designing any fu	210 210 unction using of demultiplexers	ber representation, ²¹⁰ nly NOR gates. Exp . Under what circur	210 Dlain with	(5) (5)	210
210	Q3 a) ₂₁₀ b)	F(w, x, y, z)= ∑(1,	ving Boolean functi 4,5,6,12,13,14,15) een RAM and ROM		ariable K-map to Sol 210	P form. 210	(5) (5)	210
	Q4 a) b)		on F (A, B,C) = A'(een sequential circ		+ AB' to two literals. ational circuits.		(5) (5)	
	Q5 a) b)	• •	nultiplier for multiply te using CMOS log		nary numbers.		(5) (5)	
210	Q6 ₂₁₀	Design a 4-bit up/down counter using a negative edge triggered T flip-flop. The clock in applied in an asynchronous manner.					(10)	210
	Q7	Describe the evolution of VLSI along with the "patterning" and "lithography" techniques.					(10)	
210	Q8 a) 210 b) c)	Write short answ Floating-point nur CMOS memories Hardware Descrip	nber representation	n 210	210	210	(5 x 2)	210

210 210 210 210 210