
|                                                                                                                                                                                                                                                                                                                   | R              | egistration No :                                                                              |                         |                     |          |        |           |          |          |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------|-------------------------|---------------------|----------|--------|-----------|----------|----------|----------|
| Total Number of Pages : 03                                                                                                                                                                                                                                                                                        |                |                                                                                               |                         | 210                 | 21       | )      | 210       |          | 210      | B.Tech   |
| 4 <sup>th</sup> Semester Regular / Back Examination 2018-19 CONTROL SYSTEM ENGINEERING BRANCH: AEIE, EIE, IEE Max Marks: 100 Time: 3 Hours Q.CODE: F482 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III. The figures in the right hand margin indicate marks. |                |                                                                                               |                         |                     |          |        |           |          |          |          |
| Q1                                                                                                                                                                                                                                                                                                                |                | Part- I Only Short Answer Type Questions (Answer All-10)                                      |                         |                     |          |        |           |          |          | (2 x 10) |
|                                                                                                                                                                                                                                                                                                                   | a)<br>b)       | Define control system. Write the difference between open loop and closed loop control system. |                         |                     |          |        |           |          |          |          |
|                                                                                                                                                                                                                                                                                                                   | c)<br>d)       | state error due to unit step input?                                                           |                         |                     |          |        |           |          |          |          |
|                                                                                                                                                                                                                                                                                                                   | e)             | (-1, j0) in the G(s) H(s) plane. What is its phase margin?                                    |                         |                     |          |        |           |          |          |          |
|                                                                                                                                                                                                                                                                                                                   | f)             | State the state equation of state space with usual meanings.                                  |                         |                     |          |        |           |          |          |          |
|                                                                                                                                                                                                                                                                                                                   | g)<br>h)<br>i) | transfer function.  What is the significance breakaway point of root locus?                   |                         |                     |          |        |           |          |          | 210      |
|                                                                                                                                                                                                                                                                                                                   | j)             | Sketch the polar plot                                                                         | of $G(s) = \frac{1}{s}$ | $\frac{1}{1+s}$ 210 | 21       | )      | 210       |          | 210      | 210      |
| Q2                                                                                                                                                                                                                                                                                                                | a)             | Only Focused-Shor<br>The open loop tra $G(s)H(s) = \frac{5}{s^2(s+2)}$                        | nsfer fund              | ction of a          | unity fe | edback | control s | ystem is | given by |          |
|                                                                                                                                                                                                                                                                                                                   |                | also find the steady s                                                                        | state error?            | ? 210               | 21       | )      | 210       |          | 210      | 210      |

- b) Describe the construction and working of Stepper Motor.
- A unity feedback system has a forward path transfer function  $G(s) = \frac{9}{2\sqrt{s}(s+1)}$ . Find the value of damping ratio, undamped natural frequency of the system, percentage over shoot, peak time and settling time.
- **d)** Using block diagram reduction technique finds the transfer function for the system shown in below figure



- Sketch the polar plot for a given open loop transfer function  $G(s) = \frac{10}{s(s+1)(s+2)}$ .
- f) Decide the stability of the system whose characteristics equation is given by  $s^5 + 2s^4 + 5s^3 + 10s^2 + 4s + 8 = 0$
- g) Draw the complete Nyquist plot for a system whose open loop transfer function is  $G(s)H(s)=\frac{K}{s(s+2)(s+10)}$ . Determine range of K for which closed loop system is stable.
- h) Explain M-circle and N-Circle. 210 210 210
- i) What do you mean by state transition matrix? State the properties of STM.
- j) Define Sensitivity. In a position control system the forward path transfer function is  $\frac{100}{s(1+s)}$  and feedback path transfer function is 10. Determine the sensitivity of T with respect to feed forward feedback elements respectively in the vicinity of  $\omega = 1 \ rad / sec$ .
- **k)** The state space equation is given as  $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \text{ Find}$  the Transfer function?
- The state model of state space is given as follows. Compute the eigen values and Eigen vectors of the following state model  $\begin{bmatrix} \vdots \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$  210