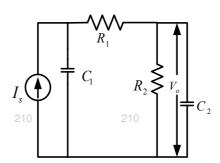
21	210	210	210	210	210	21
Reç	istration No :					
Tota⊵l	lumber of Pages : 03	210	210	210	210 B	.Tech⊵₁
. 01	C	Max I Time Q.CC	FEM ENGINEE : ELECTRICA Marks : 100 e : 3 Hours DDE : F256	RING - I L		41102
Answ	er Question No.1 (Par The figu		m Part-III.			TWO 21
			Part-I			
Q1	Only Short Answer	Evpe Questions	(Answer All-10)			(2 x 10)
a 21) What do you unde		. ,	ctive such as		21
b	Why state variable is	not unique?				
С	Define causal system	with both a state	ment and an equ	ation?		
d	Why it is necessary the stable system?	nat poles of a sys	tem should be lie	e in the left half o	of S-plane for a	
е	Find correlation betwe	een step transient	and frequency r	esponse specific	ation?	
2 f	Explain principle of ar	gument?	210	210	210	2
g	Why D controller can	not alone used?				
h	Prove that 20db/deca	de is equal to 6db	o/octave?			
ij	Differentiate between	Hurwitz stability of	criterion and Rou	th stability criterio	on?	
j	What are the limitation	ns of classical cor	ntrol system?			
21 Q2	Only Focused-Short					2 (6 x 8)
а	Using Nyquist criterio	n determine the s	tability of the sys	tem $G(s)H(s) =$	$\frac{10(s+3)}{s(s-1)}$	
b	Explain the constant I	A circles, the cons	stant N-circles ar	nd the Nichol's ch	nart?	
с	What is BIBO stability	of a system ?sta	ate the condition	and derive it?		
d	For a unity feedba	ck second order	system whose	e open loop tra	ansfer function	
21	4 _					2
	overshoot when step delay time and settling	g time for a stead	y state error of 7	%.		
e	A system describ ,y'(0)=1,r(0)=7,r(t)=7e component?	ed by $\frac{d^2y}{dt^2}$ + 6 - ^{3t} . Find the force	$\frac{dy}{dt}$ + 8y = $-\frac{dr(t)}{dt}$ ed response con	r + 5r(t) and mponent and na	given y(0)=0 atural response	
f 21	A unity feedback sys	tem has an open	loop transfer fur	nction $G(s) = \frac{1}{s(s)}$	$\frac{K}{(a)^2}$. Determine	
- I	the values of K and ' frequency is 3 rad/sec					


210	210	210	210	210	210	210	210

g) A force of 2N (step input) is applied to the mass shown in below. The ideal spring has stiffness of K N/m. the frictional force is B Ns/m. damped oscillation. The maximum value of displacement X is 0.1254m occurring at t=3s and steady state displacement is 0.1m. Determine the values of m,B,K?

h) Sketch the root locus of the system whose $G(s)H(s) = \frac{Ke^{-s}}{s(s+2)}$. When K varies from 0 to infinite?

i) Draw the signal flow graph for the circuit shown in below. Also from signal flow graph

210 determine the $\frac{V_0(s)}{I_s(s)}$. 210 210 210 210 210 2

210

- j) For a first order time delay process how can you determine the PID controller parameters using Zeigler-Nichols method? Explain.
- **k)** Determine the number of roots of a given characteristics equation with real parts between 0 and -1. The given characteristics equation is $8S^5 + 44S^4 + 126S^3 + 219S^2 + 258S + 85 = 10$ 210 210 210 210 210
- I) Obtain the state space equation as well as output equation of given transfer function

$$\frac{Y(s)}{U(s)} = \frac{2s^3 + s^2 + s + 2}{s^3 + 4s^2 + 5s + 2}$$

Part-III

210Only Long Answer Type Questions (Answer Any Two out of Four)210210210Q3Sketch the nyquist plot for the system with loop transfer function
 $G(s)H(s) = \frac{K(1+0.5s)(s+1)}{(10s+1)(s-1)}$. Determine the range of K for system is stable.(16)Q4Sketch the bode plot of open loop transfer function is $G(s)H(s) = \frac{K}{s(0.1s+1)(s+1)}$. Find the
gain margin and phase margin. Also Find the value of K for which Gm is 20 dB and Pm
is 60degree.(16)210210210210210210210210210210

210	210	210	210	210	210	210	210

210	Q5 210	Define the output controllability, State controllability, Obsevability and its mathematical expression. Find the solution of non homogeneous state equation? A linear time invariant system is characterized by the homogeneous state equation $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} $ Compute the solution of the equation assuming initial state vector $x(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}$	(16) 210
Q6		Sketch the Root Locus of the system whose transfer function $G(s) H(s) = \frac{K}{s(s+2)(s+4)}$	(16)

a) What is the value of K which will produce sustained oscillation?

- b) Find the range of K for which the system is stable?
- c) What is the value of K for which the system is critically damped?
- d) For K=8, find ε , ω_n , t_s , e_{ss} and peak overshoot. e) For K=8, find the closed loop transfer function.
- f) Find the range of K for which the system response is under damped or system shows damped oscillatory response.

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210