

D Took						. 02	ration No :		
B.Tech⊵₁ EL4l102	PE	210	10		210		nber of Pages	abiyu	IOta
		tion 2018-19	Examina NGINEER				4 ^t		
		ING - I	_	BRAN	ONTROL	C			
				Max Ma					
				Time : Q.COD					
y TWO 210	Part-II and any	EIGHT from			-1) whic	l (Pari	Question No.	swer	An
,			:-III.	from					
	S.	dicate marks	margin in	right h	es in the	∍ figur	The		
				P					
(2 x 10)			-	•			Only Short An		Q1
210	regulatory and	ve such as	trol objecti	out two	stand ab		What do you servomechanis	a) 210	
					•		Why state varia	b)	
			-			•	Define causal s	c)	
	of S-plane for a			•	•	•	stable system?	d)	
	cation?	ponse specific	equency res	ansient ai			Find correlation	e)	
210	210	210	10				Explain principle	2 f))	
			•				Why D controlle	g)	
	: O	- 4 - 1- 1004			-		Prove that 20db	h)	
	10n ?	stability criteri		•			Differentiate be	i)	
			stem?	cai contr	S OI Class	illation	What are the lir	j)	
21(210	210	Щ.		210	.	210	210	
(6 x 8)	•		•				Only Focused-		Q2
	$\frac{10(3+3)}{s(s-1)}$	$m\; G(s)H(s)=$	of the syste	e the stat	determin	riterion	Using Nyquist of	a)	
	hart?	the Nichol's cl	-circles and	ne consta	l circles, t	stant M	Explain the con	b)	
		nd derive it?	condition ar	m ?state	of a syste	lability	What is BIBO s	c)	
	ransfer function						4	d)	
210	th the maximum							210	
	nd the rise time,						delay time and		
	given $y(0)=0$	5r(t) and	$v = -\frac{dr(t)}{dt} +$	$\frac{d^2y}{dt^2}$ + 6 $\frac{dy}{dt}$	d by	escribe	A system d	e)	
	atural response	oonent and na	oonse com	e forced	³t. Find th	(t)=7e ⁻	,y'(0)=1,r(0)=7,r component?		
210	$\frac{K}{(s+a)^2}$. Determine	tion $G(s) = \frac{1}{s(s)}$	ansfer fund	open lo	em has a	k syste	A unity feedbac	f) 210	
	phase crossover				a' for whic	and 'a		•	

g) A force of 2N (step input) is applied to the mass shown in below. The ideal spring has stiffness of K N/m. the frictional force is B Ns/m. damped oscillation. The maximum value of displacement X is 0.1254m occurring at t=3s and steady state displacement is 0.1m. Determine the values of m,B,K?

- **h)** Sketch the root locus of the system whose $G(s)H(s) = \frac{Ke^{-s}}{s(s+2)}$. When K varies from 0 to infinite?
- Draw the signal flow graph for the circuit shown in below. Also from signal flow graph determine the $\frac{V_0(s)}{I_s(s)}$.

- j) For a first order time delay process how can you determine the PID controller parameters using Zeigler-Nichols method? Explain.
- between 0 and -1. The given characteristics equation with real parts between 0 and -1. The given characteristics equation is $8S^5 + 44S^4 + 126S^3 + 219S^2 + 258S + 85 = 10$
- 1) Obtain the state space equation as well as output equation of given transfer function

$$\frac{Y(s)}{U(s)} = \frac{2s^3 + s^2 + s + 2}{s^3 + 4s^2 + 5s + 2}$$

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

Sketch the nyquist plot for the system with loop transfer function $G(s)H(s) = \frac{K(1+0.5s)(s+1)}{(10s+1)(s-1)}.$ Determine the range of K for system is stable.

Sketch the bode plot of open loop transfer function is $G(s)H(s) = \frac{K}{s(0.1s+1)(s+1)}$. Find the gain margin and phase margin. Also Find the value of K for which Gm is 20 dB and Pm is 60degree.

Define the output controllability, State controllability, Obsevability and its mathematical expression. Find the solution of non homogeneous state equation? A linear time invariant system is characterized by the homogeneous state equation $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$ Compute the solution of the equation assuming initial state vector	(16) 210
$\begin{bmatrix} x_1 \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$ Compute the solution of the equation assuming initial state vector $x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
 Sketch the Root Locus of the system whose transfer function G(s) H(s) = K/(s(s+2)(s+4)) a) What is the value of K which will produce sustained oscillation? b) Find the range of K for which the system is stable? c) What is the value of K for which the system is critically damped? d) For K=8, find ε, ω_n, t_s, e_{ss} and peak overshoot. e) For K=8, find the closed loop transfer function. f) Find the range of K for which the system response is under damped or system shows damped oscillatory response. 	210
210 210 210 210 210 210 210	210
210 210 210 210 210 210 210	210
210 210 210 210 210 210 210	210
210 210 210 210 210 210 210	210
210 210 210 210 210 210 210	210