	210	210	210	210	210	210	2
					n No :	legistratio	Re
B.Tec P2A10	PA				of Pages:02	l Number	Total
		2018-19	Examination		2 ⁿ		
	210				210 DDAN	210	2
	RAL	, MECH, MINE	D, AUTO, BIO RICAL. ETC. I	•			
		, ,	arks : 100	•	,, _		
			: 3 Hours				
v TWO	Part-II and any	EIGHT from F	DE : F523 npulsorv. anv	-	stion No.1 (Pa	swer Que	Ans
,	010	010	Part-III.	fro	010	210	
	210	dicate marks	and margin i	in the right	² The figu	210	2
			art- I				
(2 x 1					Short Answer Ty		Q1
					time period, frec difference betwee		
		0		diffraction?	are different type	c) What	C
	210	210	constructed?		and explain D' Al are Brillouins Zor		
	olenoidal and	at $ec{ abla} f$ is both s			alar field f satis	Ś	
		,			onal.	irrotat	
	llows from the	il form, which fo	tion in different		he Maxwell's ele ot of displacemer		g
				ainty Principle	Heisenberg's Un	h) State	-
	00^0 Find the	ering through	Compton scat		s photoelectric w s of wave leng		
		ching 2 through the	Compton Soa	in Zundergee	on Shift.		J
			art- II				
(6 x 8					Focused-Short / are generalised		Q2
	uai work anu				nbert's principle h		d
	• •	•	-		agrangian of	•	
	$= p_0 \cdot {}^2$ Obtain	$q= \stackrel{210}{q}_0$ and p	s that at $t = 0$	nitial ²¹⁰ conditio	$m\dot{q}^2 - \frac{2}{2}kq^2$, with	$^{210} L = \frac{1}{2}$	2
					on of motion and		
					the total energy coupled Oscil		
		equation for			ition and establis		U
	of Dringing				s a zone plate? S		
	210 210	210	210 210	210	s the Fraunhof um and minimur		
					that the FCC latt		
	sulators and	conductors, in	olids explains	•	be how the b anductors with di	-	ſ
	vantages and	hat are the ad	e – Ne laser. \	anism of a H	n the working m	i) Expla	i
	ectrostatics.	ignificance in el	em. Explain its		ons of a He-Ne la and explain Gaus		i
		•	tion in quantu	•	is the meanin	k) What	k
	210 ucleus using	²¹⁰ f an atomic n	210 constituent	210 cannot be t	teristics. that an electro		
						I) Show	

Part-III									
210	210	210	210	210	210	210			
	210	210 210				210 210 210 210 210 210 210			

Q3	Only Long Answer Type Questions (Answer Any Two out of Four) Set up the differential equation for a damped harmonic oscillator subjected to damping force proportional to velocity. Discuss the solution, Logarithmic Decrement and Quality factorfor under damping condition.	(16)	
Q4	210 What are Fresnel's half periodozones? Explaincall factors on which the intensity at a point due to Fresnel's half period zones depend?	(16) 210	
Q5	State the Maxwell's electromagnetic equations in a medium in presence of charges and currents. Obtain the differential form. Write down the physical significance of Maxwell's equation.	(16)	
Q6	What is black body radiation? Mention its general characteristics. State Planck's	(16)	

²¹⁰ formula for black body radiation. Show that the Rayleigh-jeans formula and 2Wien's formula are limiting cases of this formula.

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
					210		0.4.6