2019

Time: 3 hours

Full Marks: 80

Answer from both the Sections as directed

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(FUNCTIONAL ANALYSIS-II)

SECTION - A

1. Answer any four of the following:

 4×4

(a) Let {x_n¹} be a sequence in a normed space x.
If (i) {x_n¹} is bounded and (ii) {x_n¹(x)} in a
Cauchy sequence in k for each x in a subset of x whose span is dense in x. Then show that {x_n¹} is weak* convergent in x_n¹. The converse holds if x is Banach space.

- (b) Prove that Helly's selection principle.
- (c) State and prove that Generalized polarization identity.
- (d) Let X be an inner product space and F be a subspace of X and $x \in X$. Then $y \in F$ is a best approximation from F to x if and only if $x y \perp F$ and in that case dist $(x, F) = \langle x, x y \rangle^{1/2}$. Justify it.
- (e) Let $\{x_n\}$ be a sequence in a Hilbert space H. Then prove that $x_n \to x$ iff

$$x_n \xrightarrow{w} x$$
 and $\limsup_{n \to \infty} ||x_n|| \le ||x||$.

Or

Answer all questions:

 2×8

- (a) Define weak* convergent.
- (b) State Karlin's weak basis theorem.
- (c) Prove that parallelogram law.

- (d) Let X be an inner product space $\{u_1, u_2, \dots u_n, \dots\}$ be a countable orthonormal set in X and k_1, k_2, \dots belong to k. If $\sum k_n u_n$ converges to some x in X, then $\langle x, u_n \rangle = k_n$ for each n and $\sum |k_n|^2 < \infty$.
- (e) Let X be an inner product space and $f \in X^1$. Let $\{u_1, u_2, ...\}$ be an orthonormal set in X. Then show that $\sum |f(u_n)|^2 \le ||f||^2$.
- (f) Let $\{X_n\}$ be a sequence in a Hilbert space H. Then show that

$$x_n \longrightarrow x \text{ iff } x_n \xrightarrow{w} x \text{ and } \limsup_{n \to \infty} ||x_n|| \le ||x||.$$

- (g) Let X be a inner product space. Let $E \subset X$ and $x \in \overline{E}$. Then prove that there exists a best approximation from E to x iff $x \in E$.
- (h) Let $\{A_n\}$ be a sequence of self-adjoint operators in B < (H). If $0 \le A_{n+1} \le A_n$ for all n, then show that there is a positive operator A on $HA_n(x) \to A(x)$ for every $x \in H$.

(Turn Over)

SECTION - B

Answer all questions:

 16×4

- (a) Let X be a normed space (x_n) be a sequences in X. Then (x_n) is weak convergent in X iff
 - (i) (x_n) is bounded sequence in X and
 - (ii) there is some $x \in X$ such that $x'(x_n) \to x'(x)$ for every x in some subset of X' whose span is dense in X'.

Or

- (b) Let X be a normed space $\{x'_1, x'_2, ..., x'_m\}$ be a linearly independent subset of X'. Then there are $x_1, ..., x_m$ in X such that $x'_j(x_i) = \delta_{i,j}$ for i, j = 1, 2, ..., m prove it.
- (a) State and prove that the Gram-Schmidt orthonormalization.

Or

(b) State and prove the Bessel's inequality.

(a) State and prove that the Riesz Representation theorem.

Or

- (b) State and prove unique Hahn-Banach extension theorem.
- 6. (a) Show that let $A \in B < (H)$ be self-adjoint. Then A or -A is a positive operator if and only if

$$\left|\left\langle A(x),y\right\rangle\right|^2 \leq \left\langle A(x),x\right\rangle \left\langle A(y),y\right\rangle$$

for all $x, y \in H$.

Or

- (b) (i) Let H be a Hilbert space and $A \in B < (H)$. Then prove that there is a unique $B \in B < (H)$ such that for all $x, y \in H$, < Ax, y > = < x, By >.
 - (ii) Let H be a Hilbert space and $A \in B < (H)$. Show that A is normal if and only if $||A(x)|| = ||A^*(x)||$ for all $x \in H$.