2019

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(ALGEBRA-II)

SECTION - A

- 1. Answer any four of the following questions: 4×4
 - (a) If W_1 and W_2 are subspaces of a finite dimensional vector space V_1 and $\mathscr{A}(W)$ is the annihilator of W, then describe $\mathscr{A}(W_1 + W_2)$ in terms of $\mathscr{A}(W_1)$ and $\mathscr{A}(W_2)$.
 - (b) Define an orthonormal set of vectors. If $\{V_i\}$ is an orthonormal set then show that the vectors in $\{V_i\}$ are linearly independent

- (c) If λ∈F is a characteristic root of T∈A(V), then show that λ is a root of the minimal poly nomial of T.
- (d) In T is unitary and if λ is a characteristic root of T, then show that $|\lambda| = 1$.
- (e) If {v₁, v₂, ..., v_n} is an orthonormal basis of V and if the matrix of T∈A(V) in the basis is (α_{ij}) then the matrix T* in this basis is (β_{ij}) where (β_{ij}) ᾱ_{ij}.
- (f) If F is of characteristic 0 and if S and T, $A_F(V)$, are such the ST TS commutes with S, then show that ST TS is nilpotent

Or

- 2. Answer all questions from the following: 2×8
 - (a) Define annihilator from a subspace of a vector space.
 - (b) Define norm of a vector in an inner product space.
 - (c) What do you mean by the Galois group of a polynomial?

- (d) When the group is said to be solvable?
- (e) Compute the matrix product

$$\begin{pmatrix} 1 & 6 \\ -6 & 1 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 2 & 3 \end{pmatrix}.$$

- (f) Give an example of A such that $AA' \neq A'A$.
- (g) If A is invertiable then show that $det(ABA^{-1}) = detB$, for all B.
- (h) Define a normal linear transformation.

SECTION - B

Answer all questions:

16 × 4

 (a) Prove that the element a∈K is algebraic over F if and only if F(a) is a finite extension of F.

Or

- (b) State and prove Schwarz inequality in an inner product space.
- 4. (a) If A is an algebra with unit element over F,

then prove that A is isomorphic to a subalgebra of A(V) for some vector space V over F.

Or

- (b) Let $G = S_n$ where $n \ge 5$ then show that $G^{(k)}$ for k = 1, 2, ... contains every 3-cycle of S_n . Hence prove that S_n ; $n \ge 5$ is not solvable.
- 5. (a) Prove that the matrix

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$

is nilpotent, Find its invariants and Jordan form.

Or

- (b) If V is finite dimensional vector space over F, then for S, $T \in A(V)$ prove that
 - (i) $r(ST) \le r(T)$

- (ii) $r(TS) \le r(T)$
- (iii) r(ST) = r(TS) = r(T) for S regular in A(V).
- 6. (a) Prove that the linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.

Or

- (b) (i) If N is normal then prove that $N^* = p(N)$ for some polynomial p(x).
 - (ii) If N is normal and if AN = 0 then prove that $AN^* = 0$.