2019

Time: 3 hours

Full Marks: 80

Answer from both the Sections as directed

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(ORDINARY DIFFERENTIAL EQUATIONS-II)

SECTION - A

- 1. Answer any four of the following:
 - (a) Investigate the stationary point x = 0, y = 0 of the system

$$\dot{x} = 2x + y - 5y^2$$

$$\dot{y} = 3x + y + x^3$$

for the stability in the first approximation.

(b) Prove that

$$x J_n'(x) = -n J_n(x) + x J_{n-1}(x).$$

- (c) Find generating function for Legendre polynomial.
- (d) Describe the phase portrait of the following system:

$$\frac{dx}{dt} = -x, \frac{dy}{dt} = -y.$$

- (e) What is Lyapunov stability?
- (f) Construct the green function for the boundary value problem

$$y'' = -f(x), y(0) = y(1) = 0.$$

Or

Answer all questions :

 2×8

- (a) State Strum's comparison theorem.
- (b) What do you mean by oscillations of differential equations.
- (c) Define eigen functions and eigen value of a problem.
- (d) Define asymptotically stability.
- (e) What is trajectory stability?

- (f) Define adjoint operator.
- (g) State the Strum-Liouville boundary value problem
- (h) Define Green's function for a boundary value problem.

SECTION - B

Answer all questions:

16×4

3. (a) Solve the following equation in series

$$(1-x^2)y''-2xy'+2y=0$$

Or

- (b) Write Legendre's equation and solve it.
- 4. (a) For the eigen-value problem given below, obtain the set of orthogonal eigen functions in the interval (0, 2c)

$$X'' + \lambda X = 0$$
, $X(0) = X(2C)$, $X'(0) = X'(2C)$.

Or

(b) Consider the string probelm

$$\frac{d^2x}{dt^2} = F(t)$$

x(0) = x(1) = 0, then construct the Green's function.

(a) Write Strum's separation theorem and prove it.

Or

- (b) Write Green's formula and prove it.
- 6. (a) Investigate the trivial solution of the system below for stability:

$$\frac{dx}{dt} = x^5 + y^3, \frac{dy}{dt} = x^3 - y^5.$$

Or

(b) Determine the nature and stability properties

of the critical point (0, 0) for the following system.

$$\frac{dx}{dt} = 2x$$
, $\frac{dy}{dt} = 3y$.