2019

Time: 3 hours

Full Marks: 80

Answer from both the Section as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

Symbols used have their usual meaning

(ABSTRACT MEASURE)

SECTION-A

- 1. Answer any four of the following questions: 4×4
 - (a) Define outer measure. Show that if E_1 and E_2 are measurable, then

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = mE_1 + mE_2.$$

(b) Let $\langle E_i \rangle$ be a sequence of measurable sets, then

$$m(\bigcup E_i) \leq \sum mE_i$$
.

If the sets E_n are pairwise disjoint, then

$$m(\bigcup E_i) = \sum mE_i$$

(c) Define integrable over the measurable set E. Let f be a non-negative function which is integrable over set E. Then given $\varepsilon > 0$ there is a $\delta > 0$ such that for every set $A \subset E$ with $mA < \delta$ we have

$$\int_{n} f < \varepsilon.$$

(d) Let f be of bounded variation on [a, b]. Show that

$$\int_a^b |f'| \le T_a^b(f).$$

(e) Prove that

$$||f+g||_1 \le ||f||_1 + ||g||_1$$

Or

- 2. Answer all questions from the following: 2×8
 - (a) Show that if E is a measurable set, then each translate E + y of E is also measurable.
 - (b) State Lusin's theorem.
 - (c) Let f be a non-negative measurable function. Show that $\int f = 0$ implies f = 0 a.e.
 - (d) State monotone convergence theorem.
 - (e) Define Dini derivatives.
 - (f) Define absolutely continuous.
 - (g) Define Banach space.
 - (h) State Minkowski inequality.

SECTION-B

Answer all questions:

 16×4

(a) State and prove that Egoroff's theorem.

(5)

Or

- (b) Show that the interval (a, ∞) is measurable.
- 4. (a) State and prove that Bounded convergence theorem.

Or

- (b) A bounded function f on [a, b] is Riemann integrable if and only if the set of points at which f is discontinuous has measure zero justify.
- 5. (a) Let f be an increasing real-valued function on the interval [a, b]. Then f is differentiable almost every where. The derivative f' is measurable and

$$\int_a^b f'(x)dx \le f(b) - f(a).$$

Or

- (b) Let f be an integrable function on [a, b]. and suppose that $F(x) = F(a) + \int_a^x f(t)dt$. Then F'(x) = f(x) for almost all x in [a, b].
- 6. (a) Show that L^p spaces are complete.

Or

(b) A normed linear space X is complete if and only if every absolutely summable series is summable.