| ı | Regi | istration No: | | | | | | | | | | | | |------|---|---|--|---|--|---------------------------------------|----------------------------|-------------------------|---------------------------|--------------------------|-------------------------|--------------------|-----------------| | Tota | ıl Nu | ımber of Pages: | 02 | | | | | | | | | B.Te | | | 210 | Ans | | | nics Devi
RANCH:
Time:
Max M
Q.COI | ce and
AEIE,I
3 Hou
arks: 1
DE: B3 | d Inst
EIE,IE
Irs
100
895 | rume
EE | enta | tion | our fr | om the | PEI5J(| ,003 210 | | 210 | | ₂₁ The fig | ures in the | e right h | and m | argin | indi | icatę | mar | ks. | 2 | 10 | 210 | | Q1 | a)
b) | Answer the follow
What mode propa
Evaluate the NA o
1.5 and 1.48 respensive | gates in a s
f a fiber if th | ingle mod
ne refracti | le fiber'
ve indic | ? Mak
ces of | e a sl
its co | ketch
re ar | of thi | is mo
dding | are | (2 x 1 | 0) | | 210 | c)d)e)f) | Calculate the V n of 10 µm and oper Sketch the fundam Is Si used a mater Why is a photodet answer. | rates at a w
nental mode
ial to build a | avelength
e in a slab
an LED? . | of 850
waveg
Justify. | nm?
juide d | of thic | knes | ¹⁰ s d? | | 2 | 10 | 210 | | | g)
h)
i) | What is birefringer
How can you use
there is a light bea
What is the effect | two polarize
im present | ers to prod
at the inp | duce no | light
oolariz | at a d
er? | destin | | | | | | | 210 | j) | FoS? 210
How do you meas
explain in one/two | | | 210
e throug | gh an | FoS? | ² Mak | e a sl | ketch | | 10 | 210 | | Q2 | a)
b) | Answer the following questions: Short answer type The magneto optic effect is used to measure An axial misalignment between two fibers result in of a light beam. | | | | | | | _ | (2 x 1 | 0) | | | | 210 | c)
d)
e)
f)
g)
h)
i) | A Sagnac effect be The responsivity of A TEM mode can A laser behaves a 0 dBm = A polarizer affects Are any two mode The magneto option | f a photode exist in a w s an LED u — dB. the directic s ortogonal | etector is eaveguide. Inder three In of a light to each o | express True of the control c | or false
ondiio
n. True | ? Jus
ns. Tr
e or fa | stify.
rue or | r false | | | 10 | 210 | | Q3° | a) | A 10 THz uniform and 45° with the x for the electric as strengths of the thamplitude of 10V strength of the x-c | c- and the and the and the manner of man | z-axes res
gnetic fie
c field co
rther give | spective
lds of
mponer
n that | ely. W
the w
nts if t
the y- | rite d
ave.
the el | lown
Hend
lectric | the e
ce ev
c field | xpres
/aluat
d has | ssions
e the
peak | ¹⁰ (10) | 210 | | | b) | Develop an expres
thickness d. | | | | | a slab | wav | eguid | le of | | (5) | | | 210 | | 210 | 210 | | 210 | | | | 10 | | | 10 | 210 | | Q4 | a) | Develop the electric fie waveguide of radius a. | | (10) | | | | | |------------------------|----|--|--------------------|-------------------------|-----------------------|---------|-----|-----| | | b) | Compare the fundament waveguide assuming the | | | | | (5) | | | Q5 ⁰ | a) | Derive the threshold co | ams 210 | (10) | 210 | | | | | | b) | The band gap energy of approximate expression gap energy and the contract of t | n $E_g = (1.424 +$ | 1.247 <i>x</i>) eV. He | ence calculate the b | and | (5) | | | Q6 210 | a) | Sketch the power chara-
the coupled power at 1
that the refractive indic
respectively, the fibre of | (7) | 210 | | | | | | | b) | Discuss strain measure of appropriate sketches | (8) | | | | | | | Q7 | a) | How do you measure a with the underlying prin | | | ggest a suitable sche | eme 210 | (7) | 210 | | | b) | Explain the effect utilized discuss current measure of each block very near | rement. Draw a i | neat diagram a | nd explain the functi | on | (8) | | | Q8 | a) | Explain circular polariza appropriate expression | | lp of a neat ske | etch and hence deriv | е | (7) | | | 210 | b) | Write Short notes on a) Modes in an optical b) LEDs c) Polarizers d) Optical fiber based li | fiber | 210 | 210 | 210 | (8) | 210 | | 210 | | 210 | 210 | 210 | 210 | 210 | | 210 | | 210 | | 210 | 210 | 210 | 210 | 210 | | 210 | | 210 | | 210 | 210 | 210 | 210 | 210 | | 210 |