							1	1					
Total Nu	ımber of Page	s : 03										B.Tech PME5I102	
210 Ans	ewer Question			Hea BRAN Tim Max Q.C	nt Tra NCH: e: 3 Mark ODE:	ansfe : ME Hour ks: 1 : B4	er CH 's 00 99				ır from t		21
210		figures				-		-		-		10	210
Q1	Answer the fo	llowing o	questic	ns: <i>n</i>	nultip	ole ty	pe or	dasł	n fill u	ıр typ	e	(2 x 10)
a)	LMTD in case exchanger is (a) Higher (b) Lower	of counte	er flow I	neat e	xcha	nger :	as co	mpare	ed to	parall	el flow he	eat	
210	(c) Same (d) Depends or	the area	a of hea	at excl	nange	210 er			210		21		210
b)	Thermal condu (a)Increases (b)Decreases (c)Remains con (d) None	ctivity of	non-me	etals v	vith in	oreas			ty				
c)	The value of P												
₂₁₀ d)	Which dimension (a) Reynolds, F (b) Reynolds, F (c) Grashoff's, (d) None	Prandtl ar Prandtl an	nd Nus nd Gras	selt N hoff's	umbe Num	er iber	onve	ction	210		21		210
е)	The thickness of number is (a) Equal to one		l and h	ydrod	ynam	nic bo	undaı	ry laye	er is e	equal i	if Prandtl		
210	(b) Greater that (c) Less than o (d) Equal to Nu	ne	210 nber			210			210		21		210
f)	The product of (a) Stanton nur (b) Biot numbe (c) Peclet numl (d) Grashoff nu	nber r per	s numb	er and	d Prai	ndtl n	umbe	eris ki	nown	as			
²¹⁰ g)	In lumped para respect to posit	meter an	alysis,	the te	mper	ature	in a s	solid	210		with ²¹		210
h) i)	The term NTU The maximum is the b	possible	transfe	r occu		he su	ırface	temp	eratu	re of	the fin		
	Thermal condu	-			V	vith ri	se in	tempe	eratur	e.			
j)		ouvity of	water .			• • • • • • • • • • • • • • • • • • • •		٠٠٥٠					

Q2		Answer the following questions: Short answer type	(2 x 10)	
	a)	Explain what you understand by overall heat transfer co-efficient.		
	b)	Distinguish between fin efficiency and fin effectiveness.		
210	c)	What are the non-dimensional numbers important in natural convection?		21
	d)	For a laminar flow over flat plate explain qualitatively how does the heat transfer		
		coefficient depends on thermal boundary layer thickness?		
	e)	What is a grey body?		
	f)	How many independent view factors can be defined for a cubic enclosure?		
	g)	In which of the cases critical insulation is important? A steam carrying pipe or		
		The refrigerant carrying capillary tube in a refrigerator.		
	h)	Difference between conductivity and conductance. What are their units?		
210	i)	What is emissivity? 210 210 210 210		21
	j)	What is transient heat conduction?		
Q3	a)	One end of a steel rod (k = 25 W/m-K) of length 1m and dia 5cm is maintained	(10)	
QU	uj	at 500°C. The other end is exposed to air at 25° C. The heat Transfer co	(10)	
		efficient between the rod and the air is 100 W/m ² -K. Find out the (i) steady state		
		temperature at the midpoint of the rod (ii) steady state heat conduction rate		
		through the rod.		
210	b)	Derive an expression for critical insulation thickness for a spherical body.	(5)	21
04	٠,	Two ands of a red (b. OF M/re I/) of law oth Are and die Fere are accordated to	(4.0)	
Q4	a)	Two ends of a rod ($k = 25 \text{ W/m-K}$) of length 1m and dia 5cm are connected to two thermal reservoirs at 300°C and 20°C respectively. The lateral surface of	(10)	
		the rod is exposed to air at 50°C. The heat transfer co efficient between the		
		lateral surface of the rod and the air is 100 W/m ² -K. Find out (i) the rate of heat		
		loss from the hot thermal reservoir. (ii) the rate of heat exchange between the		
		rod and air.		
210	b)	Derive an expression for temperature distribution in an infinitely long fin.	(5)	21
0.5	- \		(4.0)	
Q5	a)	A steel pipe of 20 mm inner diameter and 2mm thickness is covered with 20mm thick of fibre glass insulation (k= 0.05 W/m-K). If the inside and outside	(10)	
		convective coefficients are 10 W/m ² -K and 5 W/m ² -K, calculate the overall heat		
		transfer coefficient based on inside diameter of the pipe.		
	b)	What is Stefan-Boltzmann law? Explain the concept of total emissive power of a	(5)	
	ω,	surface.	(•)	
210		210 210 210 210 210 210		21
Q6	a)	Hot gas at 200°C flows (parallel to an edge) over a square plate of side 2m with	(10)	
		a velocity 20m per sec. The plate is maintained at 20°C. Find out the rate of		
		heat transfer to the plate. Assume the following properties for the gas.		
		$K = 0.1 \text{ W/m-k}$ $Pr = 0.85$ $V = 1.5 \times 10^{-6} \text{ m}^2 \text{/s}$		
	b)	Explain the Planck's relation for monochromatic emissive power of a black body	(5)	
07	٠,	What is rediction chiefd? Draw that if a country of shield are intended a	(4.0)	
Q7 10	a)	What is radiation shield? Prove that if <i>n</i> number of shield are introduced parallel plates with emissivity same as those of the shields the	(10)	21
		between two long parallel plates with emissivity same as those of the shields the heat transfer rate is reduced to $(n + 1)^{-1}$ of the original heat transfer rate.		
	b)	Distinguish between Black body and grey body.	(5)	
	~,	2.5gd.o John Diddi Dody and groy body.	(5)	

Q8	a) b)	10cm inner diameter and 12 cm outer diameter. The pipe is located in a space at 30°C and the thermal conductivity of the pipe material is 200 W/mK. Neglecting surface heat transfer coefficients, calculate the heat loss through the pipe per unit length and the temperature at a point halfway between the inner and outer surface. What should be the surface area normal to the direction of heat flow so that the heat transfer through the pipe can be determined by considering material of the pipe as a plane wall of the same thickness?							
Q9 210	a) b)	Following data reference $T_{hi} = 200^{\circ} C$ $T_{ho} = 10^{\circ} C$ If the overall heat the and maximum requirements $T_{ho} = 10^{\circ} C$ Write the dimension	= 80° C ²¹⁰ T _{co} = ansfer co-efficient ired area of the	160° C $T_{ci} = 40^{\circ}$ C nt is 200 W/m ² –K. heat exchangers fo	Find out the mr r unit heat tran		(10) (5)	210	
210		210	210	210	210	210		210	
210		210	210	210	210	210		210	
210		210	210	210	210	210		210	
210		210	210	210	210	210		210	
210		210	210	210	210	210		210	