Registration No :															
Tota	al Nu	ımber of Paç	jes :	03									1		B.Tech
210		210	5 th	Sem	neste BF	Pow RANC Ti Ma	er El CH: E me: 3 x Ma	lectro	onics TRIC urs 100	5	2017	'-18		210	PEE5I101
210	Ans	wer Questio Th			nd 2 v in th									om th	e rest.
Q1	a)	Answer the in a load corby (V=input v (a)2VC/I (b) I	follov nmuta oltage	ving of ated e, C=	quest DC cl capa	i ons : noppe	mula er, the	tiple :	<i>type d</i> imum	o <i>r da</i> chop	sh fil	l up t	ype	given	(2 x 10)
210	b)	For reliable g (i) slight over (ii) very soft t (iii) very hard	trigge rigger	ering ring	ing of	thyris	stors,	it is a	dvisa	ble to	210	loy		210	210
	c) d)	(iv) none of the A half-wave to triggering and (i) 240° (iii) 200° The average	ne about the second sec	ove or co the th (ii) (iv)	nyristo 180º 120º n DC	or is 1	20°, t ge foi	he ex	tinction	on an ase f	gle w ully w	ill be . ave f	ully		
210	e)	which of the (i) high currer (ii) high rate ((iii) high temp	follow nt rati of rise	ving d ng of cu	loes n urrent	ot ca						onsia	erea is	> 210 	210
210	f) g)	(iv) high rate The sinusoid (a)output volt frequency on In a single ph angle $\beta > \pi$,	of rise al pul: age o ly(d) o ase f	e of vector of the of t	oltage odulat o) bot t volta nverte	tion of h outp age, f er, for	out von reque	ltage ncy a ontinu	and f nd ha ous k	reque irmor	ency (nic co	c)out ntent.	put	²¹⁰	210
210	h) i)	In a three-phasame as outpout freque A driver circular	out fre ency (quen d)inde	cy (b) epend	itwice lent o	the of the	utput outpu	frequ t freq	iency uency	(c)th	ree tir	mes the	е	210
210	j)	for, (i) isolation (iii) polarity cl A single phasone half-wave (i) two half-we (ii) four half-ve (iii) two full-we (iv) four full-we	se to se of ir aves vaves aves	e (ingle single nput vof out of out of out	oltage tput vent utput vent tput v	cessa se ste e will oltage oltage	ry driv p-up o give r e e	ve por cyclor	wer conve	rter c	hango 210	es f to	o 4f. Th	nen,	210

Q2 210	a) b) c) d) e) f) h)	Answer the following questions: Short answer type Give some important characteristics of a controllable switch. What do you mean by latching current and holding current of an SCR? Define power circuit, control circuit and triggering circuit? What is the difference between the line frequency converter and switching converter? What are the advantages of free wheeling diode in a phase controlled converter? Write down the conditions for inverting mode of operation of a single phase full wave controlled rectifier. In a three phase semi converter, for firing angle equal to 90° and for continuous conduction, what is the conduction period of each SCR and diode? For a single phase full wave converter, if the load current is ripple free having value I, then what is the average value of each thyristor current? What is the difference between the voltage source inverter and current source	(2 x 10)
	j)	inverter? How cyclo-converter differs from rectifier–inverter for converting static ac frequency to variable ac frequency.	
Q3 ⁰	a) b)	Sketch the turn-on and turn-off switching characteristics of an SCR switch. With neat circuit diagram, explain the need of need of Snubber circuit and a series inductor in SCR switch?	(10) (5)
Q4	a)	Draw the output voltage, thyristor current and supply voltage waveform with neat diagram for single phase fully controlled rectifier of R-L load considering the source inductance. Derive the fundamental supply current, power factor of the rectifier and average DC voltage with the source inductance.	(10)
210	b)	A single phase fully control rectifier has load of R=15 ohm and $V_s = 220 \sin 314t$ and unity transformer ratio. If it is required to obtain an average output voltage of 70% of the maximum possible output voltage, Calculate (a) the delay angle (b) the efficiency (c) ripple factor of the output voltage (d) the transformer utilization factor (e) the peak inverse voltage (PIV) (f) the crest factor of the input current	(5)
Q5 ₀	a) b)	Draw the neat circuit diagram, trace and explain the load voltage waveform and find the total harmonic distortion (THD) of the source current for a three phase half wave controlled rectifier with DC load. Draw and explain the current-voltage characteristic of a GTO thyristor switch and how it differs from an ordinary three wire thyristor switch?	(10) ₂
Q6	a)	Explain details the working operation of buck-boost converter with neat diagram and trace the output voltage, current through and voltage across the	(10)
210	b)	inductor in converter element. 210 210 210 A step up chopper has input voltage of 220 V and output voltage of 660 V. if the conducting time of thyristor chopper is 100 μs , compute the pulse width of output voltage. In case out put voltage pulse width is halved for constant frequency operation, find the average value of new output voltage.	(5)
Q7	a)	What are the advantages of pulse width modulation? Describe the technique of technique of single pulse-width modulation in detail with the expression for modulation index and RMS output voltage? 210 210	(10)
	b)	Write short notes on R-C Triggering Circuit	(5)

Q8	a)	Discuss the operation of 3 phase inverter with 120° conduction mode for 3 phase star connected resistive load. Draw the switching pattern, phase and line voltage waveforms. Enumerate the advantages as compared to 180°								
210	b)	conduction mode. Write short notes U	PS. ²¹⁰	210	210	210	(5)	210		
Q9	a)	A buck converter is supplied by a DC source of 48V. It produces an output voltage of 18V across a 10 ohm load resistor. Assume that the capacitor is large enough so that the output voltage is kept constant. Determine (a) the duty cycle <i>D</i> (b) Find the minimum inductor size <i>Lmin</i> if the switching frequency is 40kHz. (c) Calculate the minimum and maximum value of ripple current.								
210	b)	Explain single phas	e cycloconvert	ter with suitable o	liagram. 210	210	(5)	210		
210		210	210	210	210	210		210		
210		210	210	210	210	210		210		
210		210	210	210	210	210		210		
210		210	210	210	210	210		210		
210		210	210	210	210	210		210		