| Reg | istration No. | | | | | | | | |---------------|---|---|---|---|------------------------------------|-------------|----------------|------| | Total num | nber of printed p | ages : 03 | | | | | B.T
PCE5J | ech | | 210 | ver Question No.
The figu
Ass <i>um</i> e s <i>uitabl</i> e | Tim
Max
Questio
1 and 2 which
Ires in the righ | nulation &
NCH : CH
le : 3 Hou
Marks : f
on Code (
are comp
t hand mand mand mand mand mand mand mand m | k Mode
IEM
Irs
100
: B234
oulsory
argin i | elling and any ndicate materials | four fron | n the rest. | 0002 | | Q1)
a) | Answer the follow Plug flow reactor i. Lumped ii. Distribute | is an example omodel | | | | | (2 x | 10) | | 210 | iii. Both of a | bove 210 | 210 | | 210 | | 210 | | | b) | $P=\sum_{i=1}^{N} x_i r_i P_i^s$ rep
i. Activity co
ii. Relative
iii. Phase eo | pefficient | | | | | | | | c) | iv. Roult's law v. Arrhenius tempel i. $K = \alpha e^{-EH}$ ii. $K = \alpha e^{-EH}$ iii. $K = \alpha e^{-EH}$ iv. $K = \alpha e^{-E/R}$ | rature represent | 210
S | | 210 | | 210 | | | 210 d) | v. 210 Intermediate poir i. Function ii. Function | nt of dichotomou
values at the int
values at the int
values at the int | erval are h
erval are h | is deter
aving s
aving e | ame value
qual sign |) | 210 | | | 210 | i. Heat exc
ii. Pump
iii. CSTR
iv. Crusher
v. | 210 | 210 | | 210 | | 210 | | | f) | An output stream
flow sheet is kno
i. Serial pro | wn as ²¹⁰
ocess
cy matrix proces
process | 210 | - | out stream
210 | i in a simu | alation
210 | | | 210 | g) | An objective function having single extremum is i. Unimodal function ii. Multimodal function iii. Both of these iv. None of these 210 210 210 210 | | 210 | |---------------------------|--|---|----------|-----| | | h) | To convert the ≤ type constraint into equation, the variable used is i. Slack variable ii. Surplus variable iii. Artificial variable iv. No variable is used. v. | | | | 210 | i) | An array with 3 entries per row is i. Stream connection matrix ii. Process matrix iii. Incidence matrix iv. None of these | | 210 | | 210 | j) | i. Ability to determine a sequence of calculation ii. Allows changes to be made in how units are connected iii. Interpretation of result iv. None of above | | 210 | | Q2) | a)
b)
c)
d)
e)
f)
g)
h)
i) | Answer the following questions: Define degrees of freedom. What is chemical equilibrium? What is process simulator? Define equation of state. Differentiate between lumped & distributed model. Define Wegstein method. Write the limitations of Fibonacci method. What is golden ratio? What are recycle set in simulation? Name any two software available for simulation. | (2 x 10) | 210 | | Q3. ²¹⁰ | a) | Explain the energy equation of a Plug flow reactor with a neat sketch. | (4) | 210 | | | b) | Write the component continuity equation desiring CSTR with simultaneous first order isothermal reaction. $ A^{k1} B A^{k2} C $ | (3) | | | 210 | c) | Develop the model equation of Flash drum vapor-liquid system with a neat sketch. | (8) | 210 | | Q4. | a) | How LPP is converted into standard form? | (5) | | | 210 | b) | Solve the following LPP using simple method.
Max $Z=3X_1+2X_2+5X_3$
Subject to, $X_1+2X_2+X_3\leq 430 \qquad ^{210} \qquad$ | (10) | 210 | | a) | An automobile production line turns out about 100 cars a day but deviation | |----|---| | | occurs owing to many causes. The production is more accurately described | | | by the probability distribution. Finished cars are transported by a ferry. If the | | | ferry has a space for 101 cars, what will be the average number of cars | | | waiting to be shipped & what will be the average number of empty space on the ship for 15 days? | | | a) | (10) | Production/Day | Probability | Production/Day | Probability | |----------------|-------------|----------------|-------------| | 95 | 0.03 | 101 | 0.15 | | 96 | 0.05 | 102 | 0.10 | | 97 | 0.07 | 103 | 0.07 | | 98 | 0.1 | 104 | 0.05 | | 99 | 0.15 | 105 | 0.03 | | 100 | 0.2 | | | - b) Describe different types of process simulation problem. (5) - **Q6.** a) Describe the design equation of an ideal distillation column. Define the state variables for it. (10) - **b)** Why differential equations are commonly used in model building? (5) - Q7. Consider the following system & develop the mathematical model for it. What are the state variables for it & what type of balance equations have used? (15) - Q8. Describe the design equation of LPG vaporizer. What are the assumptions made for it? Define the state variables for it. Plot a neat sketch. - Q9. a) Discuss the Newton-Raphson method. (5) - b) What do you understand by formulation of mathematical model. (5) - c) Discuss about non-isothermal CSTR. (5)