Or

(b) Write short notes on the following:

- (i) CI and FAB mass spectra
- (ii) α cleavage
- (iii) Molecular ion peak
- (iv) Base peak.

16

2019

Time: 3 hours

Full Marks: 80

Answer from both the Sections as directed

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(APPLICATION OF SPECTROSCOPY)

SECTION - A

Answer any four of the following:

- (a) What is the essential requirement for a solvent to be used in UV spectroscopy? Why is ethanol a good solvent in UV?
- (b) Write the Woodward Fieser rule for calculating (λ_{max}) in conjugated dienes.
- (c) Write the characteristic features of overtones and combination bands.

(Turn Over)

 4×4

- (d) Explain Zeno-Field Splitting.
- (e) How many peaks in ¹³CNMR for the following compounds used be obtained
 - (i) $H_3C-C=C-CH_3$

(f) Write down fragmentation pattern of acetone and butanal.

Or

- 2. Answer all questions from the following: 2×8
 - (a) How will you distinguish the following compounds from their pairs on the basis of IR spectra?

- (i) C₆H₅COCH₃
- (ii) CH₃COCH₃
- (b) In IR spectrum two bands appear near 3500 cm⁻¹ and 1050 cm⁻¹ respectively, identify the compounds.
- (c) How many different types of H are present in the following:
 - (i) CH₃ CH₃
 - (ii) CH₂CH₂CH₂Br
- (e) How isotopes abundance is useful for determining molecular formula.
- (f) How you can determine the base peak in the mass spectra?
- (g) Why azulene blue in colour? Explain.
- (h) Which type of absorption is useful for determining the band gap in the molecules.

SECTION - B

Answer all questions:

16×4

8

- (a) (i) Derive the Beer-Lambert law. How is it useful to calculate the concentration of the compound at a given λ_{max}.
 - (ii) Two main peaks are obtained in the UV-spectrum of acetone at $\lambda_{max} = 279 \text{ m}\mu$ and $\lambda_{max} = 189 \text{ m}\mu$. Write down the electronic transitions for each peak.
 - (iii) Calculate λ_{max} of the following compounds:

Or

(b) (i) Explain different types of electronic transition in U.V. spectrometry. 8

(ii) Calculate the λ_{max} of the following compounds using Woodwards Fieser rule:

- 4. (a) (i) Find out the expression for Hook's law. 6
 - (ii) Distinguish between maleic acid and fumaric acid using IR spectroscopy. 8
 - (iii) Indicate the principal absorption regions in the IR spectra of the dimethyl ether. 2

M.Sc.-Chem-IIS(409)

Or

(b) (i)	Highlight the principal of IR spectros-
	copy.

(ii) Give reasons

- (A) Which one is more energetic between stretching and bending vibrations.
- (B) In IR spectrum four bands appear at 3030 cm⁻¹, 1710 cm⁻¹, 1280 cm⁻¹ and 945 cm⁻¹, respectively, identify the compound.
- 5. (a) (i) What do you understand by PMR spectroscopy? Describe its principle and applications. How will you interpret PMR spectra of ethanal?
 - (ii) A compound having molecular formula
 C₇H₈ presents following PMR data,
 write down its structure.
 - singlet δ , ·09, 3H
 - singlet, δ , 7.2, 5H

Or

- (b) (i) What do you understand by chemical shift and spin-spin splitting?
 - (ii) Write down the structure of the following compounds whose NMR data are as below:
 - (A) $C_4H_{10}O$ $\delta 1.28$ (δ , 9H), $\delta 1.35$ (δ , 1H)
 - (B) $C_3H_7Br \delta 1.7 (d, 6H), \delta 4.3 (Septet, 1H)$
- 6. (a) (i) Discuss the Mc-Lafferty rearrangement for the following:
 - A Amide functional group
 - B Ester functional group
 - (ii) How would you distinguish between pentanal-1 and pentanal-2 using mass spectrometry?
 - (iii) Describe metastable ion and how do it formed?

4

8

8

2

8

8