					CPCH 4	201 (New)	
Total number of printed pages – 4					B. Tech		
Registration No.:							

Third Semester Examination – 2010 FLUID FLOW AND FLOW MEASUREMENT (New Course)

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1.

	The figures in the right-hand margin indicate marks.
Ans	wer the following questions: 2×10
(a)	What is NPSH? What is NPSH?
(b)	What is NPSH?
(c)	A liquid has a specific gravity of 1.9 & kinematics viscosity of 6 stokes What is its dynamic viscosity?
(d)	Define minimum fluidization velocity. Make a force balance at this condition.
(e)	The viscosity of liquids with increase in temperature and the same for gas with decrease in temperature.
(f)	Bulk modulus of elasticity is the ratio between and
(g)	Define Mach Number. The value of Mach number for supersonic flow is
(h)	Write the force balance, when a particle falls in a fluid medium under terminal settling velocity condition?

	(i)	What is drag coefficient? Find out the projected area of a sphere har radius 'r' when a fluid flows over it parallely.	aving
	(j)	The pressure drop of 10 m head of water is equivalent	it to
2.	(a)	Write all the assumption made while deriving Bernoulli's equation. is the limitation of Bernoulli's equation?	What 2+3
	(b)	What do you mean by moment of momentum? Derive the expression the same.	on for 5
3.	(a)	Describe a venturimeter and derive an expression for meas discharge of a fluid flowing through a pipe with this device.	uring 6
	(b)	Derive an expression for momentum correction factor.	4
4.	(a)	Derive an expression for the velocity distribution of viscous flow the a circular pipe. Also sketch the distribution of velocity.	rough 4
	(b)	A lubricating oil of viscosity 1 poise and a specific gravity 0.9 is put through a 30 mm diameter pipe. If the pressure drop per meter loof the pipe is 20 KN/m², determine:	
		(i) The mass flow rate in Kg/min	
		(ii) The shear stress at pipe wall	
		(iii) The Reynolds no. of	
5.	(a)	Develop on the basis of dimensional analysis suitable parameters present the thrust developed by a propeller. Assume that the three depends on the angular velocity ω , speed of advance V, diameter dynamic viscosity μ , mass density ρ elasticity of the fluid medium can be denoted by the speed of sound in the medium C.	rust P eter D,
	(b)	What do you mean by kinematic similitude?	3
CF	PCH 4	201 (New) (2)	Contd.

- 6. (a) The average drag coefficient for turbulent layer flow past athin plate is given by $C_D = \frac{0.455}{\left(\log_{10}R_e\right)^{2.58}}$, where Re is Reynolds number based on plate length. A plate 500mm wide and 5m long is kept parallel to the flow of water with free stream velocity 3 m/s calculate the drag force on both side of the plate. v = 0.01 stokes.
 - (b) Recognize the following substances as fluids or solid and if fluids, classify them further. The values are entained from isothermal tests. 5

Substance A	Velocity gradient	1	2	3	4
	Shear stress	2	4	6	8
Substance B	Velocity gradient	1	2	3	4
	Shear stress	2	3	4	5
Substance C	Velocity gradient	0.5	1.0	1.5	2.0
	Shear stress	1.0	2.5	4.0	6.0
Substance D	Velocity gradient	0	0	0	0
	Shear stress	0.5	1	1.5	2
Substance E	Velocity gradient	1	2	3	4
	Shear stress	0	0	0	0

- (a) Derive an expression for Ergun equation with suitable assumption and discuss its applicability.
 - (b) Air flows through a packed bed of a powdery material of 1 cm depth at a superficial gas velocity of 1 cm/sec. A manometer connected to the unit, registers a pressure drop of 1 cm of water. The bed has a porosity of 0.4. Assuming that Kozeny Carman equation is valid for the range of study. Estimate the particle size of the powder.

Data given:

$$\rho_{air} = 1.23 \text{ kg/m}^3$$
 $\mu_{air} = 1.8 \times 10^{-5} \text{kg/m.sec}$

- (a) Terminal settling velocity.
- (b) Head to sudden Expansion.
 (c) Characteristic curve of centrifugal pump
- (d) Cavitation.