- 5. Answer the following questions (any three): 5×3
 - (a) Define criteria for essentiality. Classify essential elements for plant nutrition. Explain the functions, deficiency and toxicity symptoms of any 3 of them in plants.
 - (b) Trace the path of carbon in C₃ plants. How does it differ from C₄ plants? Briefly explain the overview of C₃, C₄, CAM pathways.
 - (c) Explain in details the different factors affecting photosynthesis and mention the discovery of them.
 - (d) Give an account of physiological role of Ethylene. Write the commercial applications of Ethylene for a new farming Innovation.
 - (e) What is auxin bio-assay? Diagrammatic neat and clean presentation of Auxin Bio-Synthesis (all the three Pathways).

2019

(2nd Semester)

Time: 2 hours

Full Marks: 50

Answer all questions

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(FUNDAMENTAL OF CROP PHYSIOLOGY)

1.	Fill in the blanks:			1 × 10	
	(A CO compensation		60- C	cycle is	

(i) CO₂ compensation point for C₃ cycle is ______
 ppm whereas for C₄ cycle it is ______
 ppm.

(ii) Active absorption occurs due to the _____ activity and passive absorption occurs due to the activity of _____.

B.Sc.(Ag)-IIS (CP-121)

	300			1×10
(iii)	For the synthesis of 1 mole of glucose,	2.	Multiple choice questions:	
	no. of moles of ATP used by C ₃ plants is	04	(i) Peroxisome is associated w	ith
(iv)	Auxin synthesis takes place in the presence of and		(a) Photorespiration (b) Dark respiration	
(v)	High concentration and induces shoot differentiation in tobacco callus.	ŀ	(c) Glyoxylate cycle (d) Pentose phosphate path	
(vi)	Lenticular transpiration contributes% and stomatal transpiration% of total transpiration.		(ii) Thylakoids are not stacked(a) Algae(b) Bryophytes	in grainium or
(vii)	Water potential is the sum of and		(c) Angiosperms (d) Conifers	
(viii)	Osmosis refers to the flow of solvents from concentration to concentration.		(iii) Polar transport of hormon to -	nes is attributed
(ix)	Deficiency of and elements slows down stomatal movement.		(a) Auxins (b) GA	•
(x)	is an association of fungi with plant roots which helps in the of nutrients in soil.		(c) Cytokinin (d) Ethylene	
c (Ao)_	IIS (CP-121) (Continued)	91	B.Sc.(Ag)-IIS (CP-121)	(Turn Ove

(Continued)

(iv) Partenocarpic	fruits	are	produced	by
spraying -				

- (a) Auxin on flowers
- (b) Ethylene on flowers
- (c) Abscisic acid on flowers
- (d) AMO-1618 on flowers

(v) Which of the following is synthesised in the laboratory —

- (a) Auxin a
- (b) Auxin b
- (c) Heteroauxin
- (d) All the above

(vi) The no. of gibberellins known today is -

- (a) 60
- (b) 72
- (c) 50
- (d) 80

(vii) The metal involved in stomatal movementis -

- (a) Zn2+
- (b) Mg²⁺
- (c) K+
- (d) Mn+

(viii) Active K⁺ theory for stomatal movement was proposed by

- (a) Levitt
- (b) Scarth
- (c) Yin and Tung
- (d) Steward

(ix) Water potential is highest in -

- (a) Atmosphere
- (b) Soil
- (c) Leaves
- (d) Root

- (x) Which of the following is responsible for passive absorption of water in tall plants.
 - (a) Root activity
 - (b) Root pressure
 - (c) Transpiration pull
 - (d) Diffusion
- Write True or False :

 $\frac{1}{2} \times 10$

- (a) Cell membranes are permeable to protein and impermeable to salts and gases.
- (b) Water absorption is maximum at 30-40° celcius.
- (c) Phenolic acid is a natural antitranspirant.
- (d) DCMU (a herbicide) inhibits PSI and photolysis of water.
- (e) C₄ plants are adapted to hot and humid climate.
- (f) Barley endosperm test is a bioassay technique for cytokinin.

- (g) GA₃ induces genetically female flowers to produce male flowers.
- (h) In CAM plants stomata opens during the day and closes at night.
- (i) Deficiency symptoms for potassium first appear on young leaves.
- (j) Water potential is lowest in the atmosphere.
- 4. Write short notes on (any five):

 2×5

- (a) Structural elements
- (b) Ascent of Sap
- (c) Efficiency of CAM plants
- (d) CO₂ Compensation point
- (e) Allelopathic compounds
- (f) Differentiation
- (g) Effect of air pollutants on photosynthesis.