Registration No.:									
Total number of printed pages – 3								B. Tech	
								Ī	BSCM 1205

Third Semester Examination - 2012-13

MATHEMATICS - III

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is the difference between general solution and complete solution of a partial differential equation?
- (b) Find the solution of partial differential equation $y^2 u_x x^2 u_y = 0$, using variable separation.
- (c) Express Laplace equation in spherical co-ordinates.
- (d) Solve: $\frac{\partial 2z}{\partial x \partial y} = \cos xy$
- (e) Check whether the function $f(z) = \ln |z| + i \arg z$ is analytic or not.
- (f) Prove that a linear fractional transformation have at most two fixed points.
- (g) Define conditional convergence of a series. Give an example.
- (h) Find the radius of convergence and region of convergence of the series $\sum_{0}^{\infty}\frac{n^4}{2^n}\;z^{2n}.$

- (i) Find the Taylor's series expansion of $\frac{1}{z}$ about z = -1.
- (j) Find the residue of $f(z) = \frac{1}{(z^2 + a^2)^2}$ at z = ai
- 2. (a) Find the general solution of $(x^2 y^2 z^2) p + 2xyq = 2xz$.
 - (b) Using Charpit's method solve the following equation: 5

$$2x^2q^2 + 3yq - 2z + xp = 0$$

- 3. (a) Solve: $(D^2 + DD' + D' 1)z = e^{x+y} + \sin(x+2y) + 2xy$.
 - (b) Solve $y^2r 2ys + t p 6y = 0$ using Monge's method.
- (a) Derive the solution of Heat equation for the bar with insulated ends using variable separable method.
 - (b) Find the temperature in a laterally insulated copper bar of length 50 cm long if the initial temperature is 100 sin(πx/80) °C and the ends are kept at 0° C. How long will it take for the maximum temperature in the bar to drop to 50° C. Given, density of copper is 8.92gm/cm³, specific heat 0.092 cal /(gm° C), thermal conuctivity 0.95 cal/(cm sec° C).
- 5. (a) Check the differentiability of a function $f(z) = \frac{z \operatorname{re}(z)}{|z|}$ at z = 0.
 - (b) Prove that if f(z) is an analytic function in a simple connected region, then $\oint f(z) dz = 0$, along any closed path C, but the converse is not true by giving suitable example.
- 6. (a) Evaluate $\int_{C} \frac{e^{2z}}{(z-1)(z-2)} dz$ where C: |z| = 3
 - (b) Evaluate $\oint \frac{e^z}{(z-1)^{2(z^{2+4})}} dz$, where C is a circle having center at z=0 and radius 3 unit.

- 7. (a) Find the Laurent series expansion of $f(z) = \frac{z+4}{(z+3)(z-1)^2}$ in the region
 - (i) 1 < |z-1| < 4

(ii)
$$|z-1| > 4$$

- (b) Check the nature of singularity of the following function: 5
 - (i) $f(z) = \frac{z \sin z}{z^2}$,
 - (ii) $f(z) = e^{\frac{1}{z}}$
 - (iii) $f(z) = z^3 e^{1/(z-1)}$
- 8. (a) Evaluate $\oint \frac{30z^2 23z + 5}{(2z 1)^2 (3z 1)} dz$; C: |z| = 1.
 - (b) Evalute $\int_{-\infty}^{\infty} \frac{x}{(x)^2 2x + 2)^2} dx.$