Registration No. :											
Total number of printed pages – 3									В.	. Т	

ech

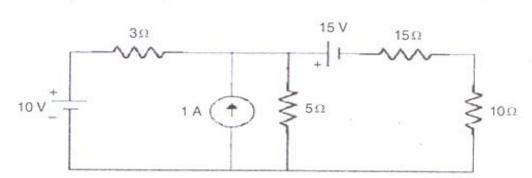
BEES 2211

Third Semester Examination - 2013 NETWORK THEORY

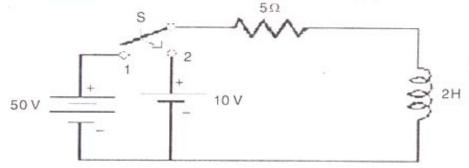
BRANCH: EIE, IT, CSE, EC, ETC, EEE, IEE, ELECTRICAL, AEIE QUESTION CODE: C-506

Full Marks - 70

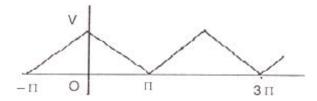
Time: 3 Hours


Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks.

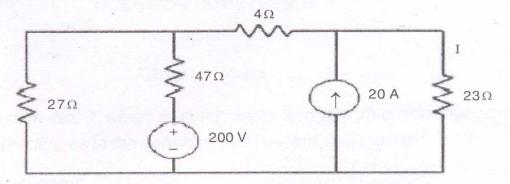
Answer the following questions: 1.


2×10

- (a) Explain why the voltage across a capacitor cannot change instantaneously.
- (b) Explain how voltage source with a source resistance can be converted into an equivalent current source.
- (c) Name the four different types of dependent sources in electric circuits.
- (d) A voltage source has internal impedance (10 + j15) ohm. Find the load impedance for maximum power transfer.
- (e) Write the formula to find the maximum output voltage in single and double tuned circuits.
- What are critical frequencies? Why they are so called? (f)
- Distinguish between steady state and transient response. (g)
- List any two advantages of 3-phase system over 1-phase system. (h)
- Write the relation between the line and phase value of voltage and current in (i) a balanced star connected load.
- What is meant by Unilateral and Bilateral element? (i)


2. (a) Find the power dissipated in 10 ohm resistor for the circuit shown in figure.

- (b) The transform voltage V (s) of a network is given by V (s) = 4s/(s+2)(s2+2s+2) plot its pole-zero diagram and hence obtain v (t).
- (a) A pure resistor, a pure capacitor and a pure inductor are connected in parallel across a 50Hz supply, find the impedance of the circuit as seen by the supply. Also find the resonant frequency.
 - (b) A three-phase delta connected load has Zab = (100 + j0) ohms, Zbc = (−j100) ohms and Zca = (70.7 + j70.7) ohms is connected to a balanced 3-phase 400 V supply. Determine the line currents Ia, Ib and Ic. Assume the phase sequence abc.
- In the circuit shown in figure, switch S is in position 1 for a long time and brought to position 2 at time t = 0. Determine the circuit current.



 (a) Find the trigonometric Fourier series for the triangular wave shown in fig. and plot the spectrum.

5

- (b) When connected to a 230 V, 50 Hz single-phase supply, a coil takes 50 kVA and 45 kVAR. For this coil calculate resistance, inductance of coil and power consumed.
 5
- 6. (a) An alternating current is expressed as i = 14.14 sin 314t. Determine rms current, frequency and instantaneous current when t = 0.02 ms.
 - (b) What is phase sequence? Explain its significance. 5
- 7. (a) Compute the current in 23 ohm resistor using superposition theorem for the circuit shown below.

- (b) A balanced 3-phase Delta connected load with voltage of 200 V, has line currents as $11 = 10 \angle 90^{\circ}$, $12 = 10 \angle -150^{\circ}$ and $13 = 10 \angle -30^{\circ}$
 - (i) What is the phase sequence?
 - (ii) What are the impedances?

5×2

5

- 8. Write short notes on any two:
 - (a) Norton's theorem
 - (b) Driving point impedance
 - (c) Time constant
 - (d) Quality factor