Registration No. :									
Total number of printed pages - 3								В.	Tech

Third Semester Examination - 2013

MATHEMATICS - III

BRANCH: MANUTECH, MME, ENV, CSE, IT, MECH, MARINE, MINERAL, MINING, AUTO, MANUFACT, EIE, FAT, CHEM, BIOMED, AEIE, IEE, ICE, BIOTECH, PLASTIC, ELECTRICAL, EEE, ETC, TEXTILE, FASHION, CIVIL, EC, MM

QUESTION CODE: C-499

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

BSCM 1205

- (a) What is the difference between general solution and complete solution to solve a partial differential equation?
- (b) Write the steps of Monges method.
- (c) Explain heat equation with initial and boundary conditions.
- (d) What is the solution of a two-dimensional wave equation
- (e) Evaluate $\lim_{z\to 0} \frac{\overline{z}}{|z|}$
- (f) What happens when ad bc = 0 in a linear fractional transformation?
- (g) Check the convergence of the series $\sum_{n=0}^{\infty} (n+1) z^{n+1}$.
- (h) Find the Taylor series expansion of $f(z) = \frac{1}{z^2}$ about z = -1

- What is the type of singularity of $f(z) = \frac{1 \sin z}{z^2}$? (i)
- Find the residue of $f(z) = \frac{1 + e^z}{z\cos z + \sin z}$ at its pole.
- Solve px $(z 2y^2) = (z qy) (z y^2 2x^3)$ 5 2.
 - Solve $x^2v^2 + p^2q^2 = x^2q^2(x^2+v^2)$. 5
- Find the general solution of following differential equation: 5 3.

$$z_{xx} - z_{xy} - 2z_{yy} = (xy - 1)e^{x}$$
 5

- (b) Solve $(x^2D_x^2 2xyD_xD_y^2 3y^2D_y^2 + xD_x^2 3yD_y^2)z = x^2y\cos(\ln x)$ 5
- Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in a rectangle in the xy-plane, 4. 0 < x < a and 0 < y < b satisfying the following boundary conditions u(x,0) = 0, u(x, b) = 0, u(0, y) = 0 and u(a, y) = f(y)

10

- Solve the above problem in a square of length π and $f(x) = \sin^2 x$, $0 < x < \pi$ (a) Check the following functions are analytic or not. 5.
 - (i) $f(z) = \frac{1}{z^4}$
 - (ii) $f(z) = \frac{z \operatorname{Re} z}{|z|}$
 - Find the orthogonal trajectories of the following curve $x^4 6x^2y^2 + y^4 = c$.
- (a) Evaluate $I = \int_{|z|=\pi}^{\pi} \cos^2 z dz$, along the circle $|z| = \pi$ from $-\pi i$ to πi 5
 - (b) Evaluate $I = \int \frac{e^{zt}}{(z^2 + 1)^2} dz$, where c : |z| = 3, t = 0 5

5

7. (a) Find the radius of convergence of the following series:

(i)
$$\sum_{n=0}^{\infty} \frac{n+13i}{(2n)} (z-i)^{2n+1}$$

(ii)
$$\frac{(n+2)z^n}{(n+3)(n+5)}$$

5

- (b) Find the Laurent series expansion of $f(z) = \frac{7z^2 + 9z 18}{z^3 9z}$ around
 - (i) z=3
 - (ii) in the region 3 < |z-3| < 6
 - (iii) |z-3| a 6

8. (a) Evaluate
$$I = \int_{-\infty}^{\Box} \frac{x dx}{(x-1)(x^2+2x+2)}$$
 5

(b) Evaluate
$$I = \int_{-\infty}^{\infty} \frac{\sin 4x}{(1+x^2)^2} dx$$