Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages – 2

B. Tech

PCMT 4202

Third Semester Examination – 2013 METALLURGICAL THERMODYNAMICS AND KINETICS

BRANCH: MME, MM

QUESTION CODE: C-501

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks.

Answer the following questions: 1.

2×10

- Differentiate between Reversible and Irreversible process.
- Differentiate between Isolated and Closed system. (b)
- (c) Differentiate between Ideal and Non-ideal solution
- (d) Differentiate between Homogeneous and Heterogeneous reactions.
- (e) Differentiate between Molecularity and Order of reaction.
- What do you mean by Standard State of a system? (f)
- What do you mean by Degree of reduction? (g)TRAL LIBA
- What is Zeroth law of thermodynamics? (h)
- What is basic principle of TGA? (i)
- What do you mean by rate determining step in reduction of iron ore? (i)
- Write short note on any two of the following: 2.

5×2

5

- (i) Heat Capacities
- (ii) Thermal Analysis
- (iii) Excess Function
- (iv) Gibbs-Duhem Equation
- Transformation formula (V)
- (a) Derive relation between cell emf and Free energy of Cell reaction. 3.
 - Calculate the standard emf of a Denial Cell which is working at 25°C with Standard Free Energy Change of the cell reaction ΔG° is -413.75 kJ/mol 5 at STP.

- What do understand by equilibrium constant for a reaction and derive the 4. relationship between the standard free energy change and the equilibrium constant.
 - The reduction of iron oxide in the blast furnace proceeds according to the (b) following reactions: 5

```
3Fe_2O_3 + CO = 2Fe_3O_4 + CO_2;
       \Delta H^{\circ}298 = -12.7 \text{ k.cal}
Fe_3O_4 + CO = 3FeO + CO_2;
       \Delta H^{\circ}298 = +9.8k.cal
FeO + CO = Fe + CO_2;
       \Delta H^{\circ}298 = -4.4 \text{k.cal}
```

Calculate $\Delta H^{\circ}298$ for the reaction Fe₂O₃ + 3CO = 2Fe + 3CO₂

- Discuss the important characteristics of an ideal solution in terms of molal 5. (a) thermodynamic potential and entropy.
 - Find the enthalpy change for the reaction $<CaO>+(CO_2) = <CaCO_3>$ (b) at 600°C. 5

The values of $\Delta H^{\circ}F$ at 298 K for <CaO>, (CO_{2}) and <CaCO $_{3}>$ (in kJ/mole) are -634.3, -393.5 and -1206.7 respectively.

$$\begin{aligned} &\text{Cp} < \text{CaCO}_3 > = 104.516 + (21.924 \times 10^{-3}\,\text{T}) - (25.945 \times 10^{5}\,\text{T}^{-2})\text{J/gm.mol.K} \\ &\text{Cp}(\text{CO}_2) = 44.141 + (9.037 \times 10^{-3}\,\text{T}) - (8.535 \times 10^{5}\,\text{T}^{-2})\text{J/gm.mol.K} \\ &\text{Cp} < \text{CaO} > = 49.622 + (4.519 \times 10^{-3}\,\text{T}) - (6.945 \times 10^{5}\,\text{T}^{-2})\text{J/gm.mol.K} \end{aligned}$$

6. Derive Maxwell's relations. (a)

5 What do you mean by fugacity? Explain how fugacity departs from P-V (b) isotherm. 5

- Decrease in free energy gives maximum work and decrease in Gibb's 7. (a) Potential during isothermal, isobaric process gives network, Justify.
 - Zinc melts at 420°C and its standard entropy at 25°C is10 cal/deg/mole. (b) Calculate the standard entropy of zinc at 750°C. 5 Data given:

RALLIA

GUN

Heat of fusion of zinc at its melting point.

 $\Delta H_f = 2 \text{ kval/mole}$

$$C_p$$
,< Zn > = 5.5+2×10⁻³T cal/deg/mole C_p (Zn) = 7.5 cal/deg/mole

What do you mean by entropy? Discuss important characteristics of entropy 8. and explain there would occur a net increase in entropy in an irreversible cyclic process. What is temperature dependence of entropy? 10