Registration No.:	
Total number of printed pages – 2	B. Tech
	PCMT 4201

Third Semester Examination – 2013 INTRODUCTION TO PHYSICAL METALLURGY

BRANCH: MME, MM

QUESTION CODE: C-494

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1.	Fill	up the blanks: 2×10	
	(a)	The stacking sequence in HCP and FCC structures are and	
		TRAL LIBRA	
	(b)	atoms are there per square millimeter (mm²) on (100) planes	
		of Fe. □	
	(c)	and can be produced by the dislocation	
		interaction.	
	(d)	Slip systems are specified by and	
	(e)	degrees of freedom in a Cu-40% Ni alloy at 1200°C.	
	(f)	weight% of ferrite andweight% of cementite	
		in pearlite is formed in a 0.77wt% C steel at 726°C.	
	(g)	condition favors the formation of grey cast-iron.	
	(h)	Austenite possesses number of octahedral and	
		number of tetrahedral voids.	
	(i)	The iron-cementite is phase diagram, while iron-graphite is	
		phase diagram.	
	(j)	Cu ₃ Al ₂ is phase in alloy systems.	
2.	(a)	What is Bravais lattice? Discuss the different types of Bravais lattice with	
		their lattice vector and inter-vector angle.	

- (b) A metal having a cubic structure has a density of 8.96 g/cm³. An atomic weight of 63.54 g/mole and a lattice parameter is 3.610 Å. One atom is associated with each lattice point. Determine the crystal structure of the metal and the packing factor of this metal.
- 3. (a) Define Miller indices. Sketch the following planes and directions within each cubic unit cell: (012), (211), [112], [101].
 - (b) An aluminum single crystal is oriented in tensile testing machine with [123] parallel to the tensile axis. It is known that slip will begin in Al when τ_{crss} on (111)[110] reaches 1.2 MPa. Calculate, what will be the yield stress for this crystal?
- 4. Sketch the slip systems of BCC and FCC cubic system with planes and directions within each cubic unit cell. What is annealing? Describe what happens when a cold worked metal is annealed?
- (a) What is cast-iron.? Draw the schematic microstructure for the following, and clearly labelling every phase: Pearlitic malleable cast-iron, Ferritic nodular cast-iron and white cast-iron.
 - (b) Draw the Pb-Sn phase diagram. Determine the amount of β that forms if a Pb-10% Sn alloy is cooled to 0 °C.
- 6. (a) What is tempering? Discuss the changes in structure and properties due to tempering of martensite.
 - (b) Explain briefly the effect of the additions of 16 wt% Cr and 8 wt% Ni alloying element simultaneously and separately to iron.
- 7. (a) Draw the TTT diagram of eutectoid steel and discuss the transformation products obtained at different temperatures.
 - (b) What is brass? Explain the structure and properties of α and β brass with their composition.

 5×2

- 8. Write short notes on any two of the following.
 - (a) Homogenous nucleation and heterogeneous nucleation
 - (b) Edge dislocation and screw dislocation
 - (c) Intermetallic compound and interstitial compound
 - (d) TTT curve and CCT curve.