Total number of printed pages - 3							B.Tech
Registration No. :							

Third Semester Examination – 2013

MATERIAL SCIENCE AND ENGINEERING

BRANCH: ELECTRICAL, MARINE, AEIE, EEE, ETC, EIE, EC, IEE

QUESTION CODE: C-498

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

 2×10

BSMS1213

- (a) What are important guidelines for selection of materials?
- (b) A copper wire originally 305 mm long is pulled in tension with a stress of 276 MPa. Calculate the elongation by assuming purely elastic deformation. Given modulus of elasticity for Cu = 110,000 MPa.
- (c) Write down four limitations of fatigue test.
- (d) Distinguish between soft and hard superconductors.
- (e) The Fermi energy of silver at 0 K is 5.51 eV. What is the average energy of free electrons in silver at 0 K?
- (f) Calculate the polarization of the He gas if placed in field of 6×10^5 V/m. The polarisability of helium is 0.18×10^{-40} Fm² and the concentration of the atoms is 2.6×10^{25} m⁻³.
- (g) Mention four applications of ferrites.

	(h)	Distinguish between spontaneous emission and induced emission.	
	(i)	What do you mean by tacticity of polymer?	
	(j)	What is anisotropic composite	
2.	(a)	How is selection of materials carried out for technological purposes?	4
	(b)	Differentiate between engineering stress and true stress.	2
	(c)	How impact strength is measured? What is it's S.I unit?	4
3.	(a)	Explain (i) Meissner Effect, (ii) Silsbee Effect.	5
	(b)	The superconducting critical temperature of mercury with isotopic ma	ass
		199.5 is 4.2 K. Calculate the superconducting critical temperature when	ı its
		isotopic mass changes to 202.5.	2
	(c)	Estimate the shift of the electron cloud with respect to the nucleus	s in
		argon atom when being d of 105 V/m is applied. The polarisability of argo	n is
		1.8 × 10 48 Fm ² .	3
4.	(a)	Two parallel plates of area of cm² are each given equal but opposite charge	ges
		of magnitude 8.9 x 105°C. Within the dielectric material filling the space	
		plates, electric field strength is 1.4×10^6 Vm ⁻¹ . Find the dielectric const	ant
		of the material filling the space between the two plates . Assume that t	wo
		parallel constitute a parallel plate capacitor.	3
	(b)	Derive an expression for the electronic polarisability in terms of ator	nic
		radius.	4
	(c)	Calculate the critical current for a wire of lead having a diameter of 1 mm	ı at
		4.2 K. The critical temperature for lead is 7.18 K and $H_0 = 6.5 \times 10^4$ amp	/m.
			3
5.	(a)	Distinguish between soft and hard ferromagnetic materials.	2
	(b)	The dielectric constant of quartz is 1.55. Suppose a beam of photons in	na
		vacuum strikes quartz crystal at an angle of 10° to the normal of the surfa	ice
		of this crystal. Find the angle of refraction.	4
	(c)	Write short note on Hysteresis.	4

6. (a) What do you mean by laser? Explain, in detail, the principle of laser production. The magnetic susceptibility of a material at room temperature is 0.82×10^{-8} . (b) Calculate its magnetization under the action of magnetic induction of 0.25 Tesla. 2 (c) Calculate the numerical aperature and acceptance angle of a fiber with a core index of 1.54 and a cladding index of 1.50. Distinguish between diamagnetic and ferromagnetic material (d) 2 Describe Briefly the different type of fiber-elli forced composite. 7. (a) 5 What do you mean by ceramic? Discuss its structure (b) 5 Write the difference between the Thermoplastic and Thermosets. 8. (a) 5 (b) What do you mean by the Matrix? Classify the composite Matrix on basis

5

the matrix.