Registration No. :										
--------------------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech BSCP 1206

Third Semester Examination – 2013 PHYSICS – II

BRANCH: BIOTECH, MM, MME

QUESTION CODE: C-509

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any **five** from the rest. The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

TRAL LIBRY

- (a) What is the principle of Tandem accelerator?
- (b) Deduce the Miller indices of a plane which cuts off intercepts in the ratio 1a: 3b: (-2c) along the three axes, where a, b, c are primitives.
- (c) What is the difference between cyclotron and synchrocyclotron
- (d) Distinguish between intrinsic and impurity semiconductors.
- (e) What are Quantum dots?
- (f) Explain 1-2-3 superconductors.
- (g) What are color centres?
- (h) Distinguish between step index and graded index optical fibers.
- (i) Mention four application of lasers.
- (j) The critical temperature for mercury with isotopic mass 199.5 is 4.18 K. Calculate its critical temperature when its isotopic mass changes to 203.4.
- (a) Describe with principle the construction and working of a Van de Graff accelerator.
 - (b) In a drift tube portion of a linear accelerator, protons are accelerated from 0.75 MeV to 100 MeV, AC voltage applied has a frequency of 200 MHz.
 Find the length of the 1st and last drift tubes.

3.	(a)	Give the construction and working of a betatron. Derive an expression fe	or
		betatron condition.	5
	(b)	What are carbon nanotubes? Describe the electrical and therm properties of carbon nano tubes?	al 5
4.	(a)	Derive the Laue's condition in scalar and vector form.	4
((b)	Define atomic form factor. What does it represent? Derive an expression	n
		for it.	4
	(c)	Discuss any two thermodynamic properties of superconductors.	2
5.	(a)	What is Meissner effect? Show that superconductors exhibit perfe diamagnetism.	ct 4
	(b)	The London penetration depths for Pb at 3 k and 7.1 k are respective 39.6 nm and 173 nm. Calculate its transition temperature as well as depth at 0 k.	-
	(c)	What are the possible applications of super conductors	2
6.	(a)	Derive the London's equation and explain the term penetration depth.	5
	(b)	Calculate the glancing angle of the (110) plane of a simple cubic cryst $(a = 2.814 \text{ Å})$ corresponding to second order diffraction maximum for the X-rays of wavelength 0.710 Å.	
	(c)	Distinguish between elemental and compound semiconductors.	2
7.	(a)	With principle, describe the construction and working of a light emittir diode?	ng 5
(b)	(b)	Explain how a semiconductor junction diode can be used as a laser? What	at
		are its merits over the other radiation-pumped lasers?	5
8.	(a)	Write short notes on:	4
		(i) Frenkel defect	
		(ii) Schottky defect	
	(b)	What are the advantages of fibre optics communication systems?	2
	(c)	Explain how a four level laser system works?	4