Registration No.:							
Total number of pri	nted pa	ages – 2	2				B 1

B. Tech

BSCM 2201

Third Semester (Special) Examination – 2013

MATHEMATICS - III

BRANCH: AEIE, BIOTECH, CIVIL, CSE, EC, EEE, ELECTRICAL, ETC, IEE, IT, MECH

QUESTION CODE: D 184

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks.

Answer the following questions: 1.

2×10

- Find the solution of partial differential equation $y^2xu_y = x^2yu_y$, using (a) variable separation.
- Write the formula for the potential on the x-axis. (b)
- Express Laplace equation in cylindrical co-ordinates CENTRAL (C)
- Find out whether $f(z) = \frac{Re(z^2)}{|z|}$, $z \neq 0$ and f(0) = 0 is continuous z not. (d)
- Check the function $f(z) = z^6$ is analytic or not. (e)
- (f) Find the fixed pts of a linear fractional transformation.
- Define radius of convergence of a series. Give an example. (q)
- (h) What is Taylor's series expansion?
- (i) Define removal singularity and essential singularity.
- State Cauchy Residue theorem. Write its importance. (j)

Derive D'Alembert's solution of the wave equation. Hence, find the deflection of the 2. string of length 2π , initial velocity is zero and initial deflection $f(x) = x(\pi^2 - x^2)$.

- Derive heat equation. Find the solution of heat equation when both ends of the 3. bar are insulated.
- Explain two dimensional wave equation with initial and boundary conditions. 4 Derive the solution of it. 10
- Check the differentiability of $f(z) = z^3$ 5.
 - 5 (b) State and prove Cauchy Intgral theorem. 5
- (a) Evaluate the Integral $I = \int Re z^2 dz$, where C the boundary of the square with vertices 0, i, 1 + i, 1 clockwise. 5
 - (b) Evaluate $\oint \frac{e^z}{(z-2)(z-1)} dz$, where C is a circle having center at z=0 and radius 3 unit. 5
- Find the Laurent series expansion of $f(z) = \frac{z+4}{(z+3)(z-1)^2}$ in the region.

 - (b) Check the nature of singularity of the following function :

 (i) $f(z) = \frac{1 \cos z}{z^3}$ 5

 - (ii) $f(z) = e^z$
 - (iii) $f(z) = e^{1/(z-2)}$
- (a) Evaluate $\oint \frac{z^2 \sin z}{4(z^2 1)} dz$, C: |z| = 25
 - (b) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 1)^2}$ using contour integration technique. 5