Registration No.:											
Total number of printed pages – 2											B. Te

ch

PCCH 4201

Third Semester (Back/Special) Examination - 2013 FLUID FLOW AND FLOW MEASUREMENT

BRANCH: CHEM

QUESTION CODE: D 216

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks.

Answer the following questions: 1.

2×10

- Differentiate between fluid statics and fluid dynamics. (a)
- Write the Barometric equation. (b)
- (C) Define potential flow.
- Discuss the effect of temperature on the viscosities of fluids and gases. (d)
- Define transition length and write its equation. (e)
- Define Fanning friction factor and Darcy friction factor. (f)
- With a diagram explain roughness parameter. (g)
- What are wall drag and form drag? (h)
- Write and explain Stoke's law. (i)
- Write the uses of venturimeter and pitot tube. (i)
- With a neat sketch, for a fluid, prove that the pressure at any point is 2. 10 independent of direction.

- 3. Water flows through a pipe AB 1.2 m in diameter at 3 m/s and then passes through a pipe BC 1.5 m in diameter. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries 1/3 of the flow in AB. The flow velocity in branch CE is 2.5 m/s. Find: (i) the volume rate of flow in AB, (ii) the velocity in BC, (iii) the velocity in CD, and (iv) the diameter of CE.
- 4. With a neat diagram, derive the Bernoulli equation without friction.
- 5. The inlet and throat diameters of a horizontal venturimeter are 30 and 10 cm respectively. The liquid flowing through the meter is water. The pressure intensity at inlet is 14 N/cm² while the vacuum pressure head at the throat is 38 cm of mercury. Find the rate of flow. Assume that 4 % of the differential head is lost between the inlet and throat. Find also the value of Cd for the venturimeter.
- 6. Discuss in details the conditions for, types of, and applications of fluidization.

3+4+3

10

7. With a neat sketch discuss the construction and working of:

5×2

- (a) Reciprocating pump
- (b) Centrifugal pump.

8. Write short notes on any two of the followings

5×2

- (a) Drag coefficient
- (b) Terminal settling velocity
- (c) Orifice meter
- (d) Cavitation and priming.