Registration No. :											
Total number of printed pages – 3											B. Tech
											CPES 5202

Third Semester (Special) Examination – 2013
ANALOGUE ELECTRONICS CIRCUIT

BRANCH: AEIE, BIOMED, CSE, EC, EEE, EIE, ELECTRICAL, ETC, IEE, IT

QUESTION CODE: D 214

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions:

2×10

- (a) What is the typical value of gain-bandwidth product of an OPAMP? What is its significance in analog circuits?
- (b) What is the difference between cascade and cascade amplifier? Mention their importance in electronics circuits.
- (c) The output waveform of an operational amplifier as specific CRO is 4V peak to peak with 0.04 micro second rise time (t_r). What is its slew rate?
- (d) What is Miller capacitance? What is its impact on input and output stage of a transistor amplifier?
- (e) What is Barkhausen Criterion of Oscillation?
- (f) Calculate the second harmonic distortion when the peak to peak V_{CE} as seen from oscilloscope is 21 volts and V_{CEQ} is 12 volts.
- (g) What is the bandwidth of the amplifier when the rise time is 0.1 msec?
 What should be the rise time of an ideal voltage amplifier?
- (h) The input resistance of a OPAMP in non-inverting configuration is more than OPAMP inverting configuration? Justify.

- (i) Why low beta (β) is generally preferred in power amplifiers?
- (j) Why embitter resistance (R_E) in the differential amplifier is generally taken high value?
- 2. (a) In the Fig.1, if R_{b1} = 470 K Ω , R_{b2} = 270 K Ω , R_{c} = 6.2 K Ω , R_{e} =1.5 K Ω , C_{b} = C_{C} =10 μ F, then find V_{c} , V_{E} , I_{C} , and V_{CE} when β =100 and V_{in} = 0V and V_{CC} =18 V.

- (b) What is the function of C_b and C_c in the above biasing circuit?
- 3. (a) Explain the four h-parameter of a transistor. How these parameters are found from the characteristics of the transistor amplifier?
 - (b) Explain the importance of source resistance (R_s) and load resistance (R_L) in a transistor amplifier circuits. Justify with necessary mathematical expressions.
- 4. (a) Why +ve feedback is generally used in oscillator circuits?
 - (b) What are the primary requirements to obtain steady oscillation at a fixed frequency?
 - (c) Derive the input impedance (Z_I) and output impedance (Z_O) of a unit feedback voltage series –ve feedback amplifier in terms of its open-loop parameters.
- (a) With a neat diagram derive the maximum efficiency of Class-B power amplifier when a sinusoidal wave signal of peak amplitude V_m is given as the input.

- (b) For a class-B amplifier with V_{CC} = 20 V driving a 16-Ω load and provides an output of 10 volt rms. Then, determine the input power, output power and circuit efficiency.
- 6. (a) A transistor has a value of α = 0.99 in a CB amplifier. Its load resistance is 4.5 Ω and dynamic resistance at the emitter junction is 50 Ω . Find its voltage gain and power gain.
 - (b) Draw an emitter follower circuit using n-p-n transistor. Derive its voltage gain using β -re model. 5
- 7. (a) Establish a condition for applying maximum signal frequency to an OPAMP which has finite slew rate 'r' 5
 - (b) Draw a non-inverting amplifier circuit of OPAMP whose open-loop voltage gain is finite and its value A_d. Derive closed-loop voltage gain of the circuit.
- 8. Write short notes on any **two** of the following:

 5×2

- (a) High frequency effects in a transistors
- (b) Nonlinear distortions in amplifier
- (c) Current mirror circuit
- (d) Depletion type MOSFET.

CPES 5202 3 - C