Registration No. :											
Total number of printed pages – 3											В.

Tech PCEC 4201

Third Semester Examination – 2013 ANALOG ELECTRONICS CIRCUIT

BRANCH: EIE, IT, BIOMED, CSE, EC, ELECTRICAL, AEIE, EEE, ETC, IEE

QUESTION CODE: C- 474

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks.

1. Answer the following questions: 2×10

- What are the basic characteristics of an instrumentation amplifier?
- (b) Why square wave is chosen for determining the bandwidth of an amplifier?

TRALLT.

- The output waveform of an operational amplifier as seen in CRO is 4 V peak to peak with 0.04 microsecond rise time (t). What is its slew rate?
- (d) What are the small signal h-parameters that are determined from input characteristics of a transistor amplifier?
- (e) Draw the electrical equivalent circuit of a crystal. Why an oscillator circuits using crystal gives stable frequency?
- Calculate the second harmonic distortion when the peak to peak $V_{\rm CE}$ as (f) seen from oscilloscope is 21 Volts and V_{CEO} is 12 volts.
- What is the bandwidth of the amplifier when the rise time is 0.1 m sec? (g) What should be the rise time of an ideal voltage amplifier?
- Why OPAMP is generally used in non-inverting configuration? Justify. (h)
- (i) How FET is used as a voltage dependent resistor (VDR)?
- Why a constant current source is used in place of R_E in the differential (j) amplifier stage of the OPAMP?

2. (a) In the Fig. 1, if $R_1 = 470 \text{ k}\Omega$, $R_2 = 270 \text{ k}\Omega$, $R_c = 6.2 \text{ k}\Omega$, $R_E = 1.5 \text{ k}\Omega$, $C_{in} = C_o = 10 \text{ }\mu\text{F}$, $C_b = C_E = 5 \text{ }\mu\text{F}$, then find V_c , V_E , I_C , and V_{CE} when $\beta = 100$ and $V_c = 0 \text{ }V$.

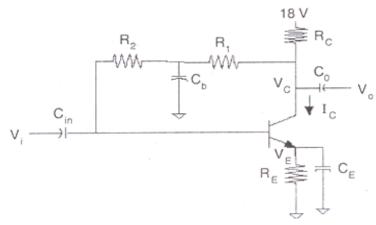


Fig. 1

- (b) What is the function of C_b and C_E in the above biasing circuit?
- (a) Derive voltage gain, current gain, input impedance and output impedance
 of a CE transistor amplifier circuits in terms of h-parameter.
 - (b) Explain the importance of source resistance R_s in a transistor amplifier circuits.
- (a) What is Barkhausen criterion? How this condition is used in oscillator?
 Explain.
 - (b) What are the primary requirements to obtain steady oscillation at a fixed frequency?
 - (c) The open-loop gain of an amplifier changes by 5 per cents. If 10 dB negative feedback is applied, calculate percentage change of the closed-loop gain.
- (a) With a neat diagram derive the efficiency of a transformer coupled Class - A power amplifier when a square wave signal of peak amplitude V_m is given as the input.
 - (b) For a Class B amplifier providing a 22 V peak to an 8-Ω load and a power supply of V_{CC} = 25 V, then determine input power, output power and circuit efficiency.

- (a) Derive the expression for the bandwidth of N no. of identical amplifiers connected in cascaded when individual amplifier stages have bandwidth, BW = F_{CH} - F_{CL} and F_{CH}, F_{CL} are the higher and lower 3-dB frequencies respectively.
 - (b) Draw an emitter follower circuit using n-p-n transistor. Derive its voltage gain.
- (a) Draw a three OPAMP based instrumentation amplifier circuits and derive its voltage gain in terms of circuit components.
 - (b) Design a OPAMP circuits in non-inverting configuration which will give an output voltage, V₀ = 0.5V₁ - 2V₂ + 0.25V₃, where V₁, V₂ and V₃ are three input voltages.
- 8. Write short notes on any two:

 5×2

- (a) Stability of transistor biasing
- (b) Push-pull power amplifier
- (c) Current mirror circuit
- (d) Depletion type MOSFET.