Registration No.:	1	5.1	a de						10		
Total number of printed pages – 3										В.	Tech
one countries			with suithfie season to					BSCP 1207			

Third Semester Regular Examination – 2014
PHYSICS OF SEMICONDUCTOR DEVICES

BRANCH(S): AEIE, BIOTECH, CSE, EC, EEE, EIE, ELECTRICAL, ETC, IEE, IT

QUESTION CODE: H 379

Full Marks - 70

Time - 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin dicate marks.

Answer the following questions :

2×10

- (a) Define Early effect.
- (b) Draw the k-space diagrams of Si and GaAs.
- (c) Explain density of state function.
- (d) What is meant by freeze out condition ?
- (e) Draw the energy band diagram for a metal semiconductor junction under forward and reverse bias.
- (f) In which way n-type MOSFET is different from p-type MOSFET?
- (g) Why the base region of a transistor is made very thin?
- (h) Define the term built-in-potential barrier for a pn-junction.
- (i) Explain the meaning of mobility.
- (j) With the help of suitable diagrams, show the minority carrier distribution in an npn transistor for cut-off mode and saturation mode.

- (a) Write the expression for the probability function of electrons and holes in the donor and acceptor states. Discuss complete ionization and freeze out conditions with suitable energy band diagram.
 - (b) What do you mean by charge neutrality in semiconductor. Discuss equilibrium effection and hole concentration for a compensated semiconductor?
- 3. (a) Derive the Einstein relation.
 - (b) Consider silicon semiconductor at T = 300° K in which N_a = 10¹⁶ cm⁻³ and N_d = 3×10¹⁵ cm⁻³. Assume that n_i =1.5×10¹⁰ cm⁻³, determine the thermal equilibrium electrons and hole concentration in a compensated p-type semiconductor.
- (a) Discuss about the scattering mechanism available in semiconductor material.
 - (b) Assume that the diffusion co-efficient of a carrier at T = 300° K is
 D = 28.3 cm²/s. Calculate the carrier mobility.
 - (c) Draw the plot of variation of E_F with doping concentration and temperature.
- 5. (a) Derive an expression for electric field and potential in the space charge region of a uniformly doped pn-junction. Where does the maximum electric field occur in space charge region? Derive an expression for space charge width.
 - (b) Derive the Ebers-Moll equations for a BJT. Sketch the equivalent circuit which satisfy these equations.
- (a) Derive the expression for the excess minority carrier electron concentration in forward active mode in an npn bipolar transistor.

2

(b) Derive voltage-current relationship of pn junction diode. From this relation explain the meaning of reverse saturation current.

BSCP 1207

5

4

- (c) A silicon pn-junction at T = 300° K has doping concentration of $N_d = 3.5 \times 10^{16}$ cm⁻³ and $N_a = 8.2 \times 10^{15}$ cm⁻³ and has a cross-sectional area of A = 5×10^{-5} cm⁻². Determine the junction capacitance at $V_R = 4$ V.
- (a) Define the Flat-band condition. Derive the expression for Flat-band voltage of a MOS Capacitor.
 - (b) An MOS device has the following parameters aluminum gate, p-type substrate with $N_a = 3 \times 10^{16}$ cm⁻³, $t_{ox} = 250$ A⁰ and $Q'_{SS} = 10^{11}$ cm⁻² and $Q_{ms} = -0.981$ V. Determine the threshold voltage.
 - (c) What is a MOSFET? Describe the constructional features and working of an n-channel enhancement mode MOSFET.
- (a) Draw and explain the C-V characteristics of accumulation region, depletion region and inversion region of a p-type substrate MOS capacitor?
 - (b) What do you mean by CMOS technology? Sketch the description of a CMOS structure. Discuss what is meant by latch-up in a CMOS structure.

5