Reg	istrat	tion No.:			
Tota	l nun	nber of printed pages – 2 B. To PCMT 43			
		Third Semester Regular Examination – 2014			
		INTRODUCTION TO PHYSICAL METALLURGY			
		BRANCH: MM, MME			
		QUESTION CODE: H 401			
		Full Marks - 70 Time: 3 Hours			
		Time: 3 Hours			
	Ans	swer Question No. 1 which is compulsory and any five from the rest.			
		The figures in the right-hand margin indicate marks			
1.	Answer the following questions:				
	(a)	Define Unit cell.			
	(b)	What is coordination number in crystal structure?			
	(c)	What is hot working of metal?			
	(d)	What is the significance of a phase diagram?			
	(e)	Define eutectic reaction.			
	(f)	What is burger's vector?			
	(g)	Why tempering is done?			
	(h)	Draw the planes (020) and (120) in a cubic structure.			
	(i)	What is the maximum solubility of carbon in austenite phase?			
	(j)	What is meant by yield point phenomena?			
2.	(a)	What are engineering materials and classify them?	5		
	(b)	Derive the expression for critical resolved shear stress of a single cryst			
			5		
3.	(a)	Schematically draw TTT diagram of eutectoid steel and label it.	5		

	(b)	Consider 2.5 kg of austenite containing 0.65 wt% C, cooled to				
		Below the eutectoid temperature.				
		(i)	What is the proeutectoid phase?			
		(ii)	How many kilograms each of total ferrite and cementite form?			
		(iii)	How many kilograms each of pearlite and the proeutectoid phase f	form?		
		(iv)	Schematically sketch and label the resulting microstructure?			
4.	Brie	fly exp	plain about the defect in the crystal.	10		
5.	(a)	Expl	lain from Hume Rothery's rule for complete solid solutions in	which		
		elem	nents mix in each other.	5		
	(b)	Diffe	rentiate between annealing and normalizing.	5		
6.	(a)	Defir	ne slip system. Do all metals have the same slip system ? Gve ea	sons.		
			9	5		
	(b)	Defir	ne the term heat treatment. Why the steels are heat to are?	5		
7.	(a)	Alun	ninium has FCC structure, its density is 2700kg/m³. Calculate the	e unit		
		cello	dimension and atomic diameter. Atomic weight of aluminium is 26	.98.		
				5		
	(b)	Expl	ain how a cored structure is produced in a 70%Cu-30% Ni alloy.	5		
3.	Writ	e sho	rt notes on any two of the following:	5×2		
	(a)	Toug	hness			
	(b)	Gibb	s phase rule			
	(c)	Hard	lness and hardenability			
	(d)	Strai	n Hardening.			