Registration No. :			17.18	1	e esta		440 P	: (9°	934.		
--------------------	--	--	-------	---	--------	--	-------	--------	------	--	--

Total number of printed pages - 3

B. Tech

PCME 4203

Third Semester Regular Examination – 2014 INTRODUCTION TO PHYSICAL METALLURGY AND ENGG MATERIALS

BRANCH(S): AUTO, MANUTECH, MECH

QUESTION CODE: H393

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks

Answer the following questions :

2×10

- (a) Draw the [1 21] direction and (210) plane in a cubic unit cell.
- (b) Differentiate between substitutional and interstitial solid solutions.
- (c) Draw the stress-strain diagram for brittle and ductile materials.
- (d) Calculate the length of the Burgers vector in copper, if it has FCC crystal structure and lattice constant of 0.36151 nm.
- (e) Differentiate between recovery and recrystallisation.
- (f) Contrast the microstructure between spheroidite and tempered martensite.
- (g) If the grain size is refined then what happens to the strength of the specimen?
- (h) What are nanomaterials?
- Differentiate between thermosetting and thermoplastic materials.
- (j) What is sintering process?
- (a) Describe and illustrate the edge and screw dislocations. Draw Burgers
 circuit to show magnitude and direction of Bugers vector on a crystal having
 edge dislocation.

- (b) Calculate the number of vacancies per cubic meter in gold at 900°c. the energy for vacancies formation is 0.98eV/atom. Furthermore, the density and atomic weight for Au are 19.32g/cm³ and 196.9g/mol,respectively. 5
- 3. (a) Explain and find an expression for resolved shear stress. What is critical resolved shear stress?
 - (b) A single crystal of a metal that has the FCC crystal structure is oriented such that a tensile stress is applied parallel to the [100] direction. If the critical resolved shear stress for this material is 0.5 MPa, calculate the magnitude of applied stress necessary to cause slip to occur on the (111) plane in [011] direction.
- 4. (a) What are the Hume-Rothery rules for the solid solubility?
 - (b) Draw binary isomorphous phase diagram of any two component system (say AB system) and show salient points of 1
 - (c) Consider a Pb-70% Sn alloy. Determine
 - (i) The amounts and compositions of each phase at 184°C,
 - (ii) The amounts and compositions of each phase at 182°C
- (a) Draw Iron-carbon equilibrium diagram and label the phase fields.
 Discuss in brief the different reactions that take place in this system.
 - (b) Consider 2.5 kg of austenite containing 0.65 wt% C, cooled to below the eutectoid temperature
 - (i) What is the proeutectoid phase?
 - (ii) How many kilograms each of total ferrite and cementite form?
 - (iii) How many kilograms each of pearlite and the proeutectoid phase form?

Schematically sketch and label the resulting microstructure.

- 6. (a) Make a copy of the isothermal transformation diagram for an iron-carbon alloy of eutectoid compostion and then skrtch and label time-temperature paths on this diagram to produce the following microstructures:
 - (i) 100% coarse pearlite
 - (ii) 50% martensite and 50% austenite
 - (iii) 50% coarse pearlite, 25% bainite and 25% martensite.

3

4

- (b) With respect to isothermal transformation diagram explain what transformations will take place when a steel with 0.5%C is cooled at a
 - (i) slow rate and
 - (ii) fast rate. How is this transformation influenced by addition of chromium and nickel?
- (a) Describe the Jominy end quench test. Draw the hardenability curves for plain carbon steel and different alloy steels. What is the significance of these curves.
 - (b) Describe how steel is designated. What are alloy steels? Explain the composition, properties and applications of following stainless steels: 5
 - (i) austenitic and
 - (ii) martensitic.
- 8. (a) Discuss the structure of an optical fibre. What are various types of fibres?

 Explain their advantages over opprentional transmission devises.

 5
 - (b) Explain briefly how the volume of fiber fiber bentation, and fiber strength and modulus affect the properties of fiber seinforced composites.

 5