Registration No.:	ration No. :					15		
-------------------	--------------	--	--	--	--	----	--	--

Total number of printed pages – 2

B. Tech BSCP 1206

Third Semester Regular Examination – 2014 PHYSICS – II

BRANCH: BIOTECH

QUESTION CODE: H378

Full Marks - 70

Time - 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Write the difference between d.c. accelerator and r.f. accelerator?
- (b) What is the function of a cyclotron?
- (c) The crystallographic axes in a cubic crystal are along X, Y, Z axes. What are the miller indices of the planes parallel to the YZ plane?
- (d) Explain why Compton scattering is neglected in X- ray diffraction.
- (e) Why an increase in temperature decreases the resistivity of a semiconductor?
- (f) What are Quantum dots?
- (g) What are top up and top down processes for preparation of nanophase materials?
- (h) On the basis of geometry of crystals what are different types of defects?
- (i) What is step index optical fiber? Draw its refractive index profile.
- (j) Distinguish between spontaneous emission and stimulated emission.
- (a) Give the construction of a betatron. Mention the functions of the non-uniform and time varying magnetic field.

	(b)	Describe the construction of a linear accelerator. Show that the velocities	0
		the ion in the tubes are in the ratio 1 : $\sqrt{2}$: $\sqrt{3}$:	E
3.	(a)	What is meant by reciprocal lattice?	
	(b)	Explain how Kronig-Penney model predicts presence of energy bands	in
		crystalline solids. What are the other conclusions drawn from it?	5
4.	(a)	Describe the fabrication and structure of carbon nanotubes. What are electrical properties?	its 5
	(b)	Compare the nano synthesis properties between Inert gas condensationand high energy ball milling.	-
5.	(a)	Discuss different type of crystal imperfections with neat diagram.	5
	(b)	Mention the Laue conditions for crystal diffraction. Show that Bragg condition follows from them.	's
6.	(a)	Derive London's equations for superconductor. How does it depend of temperature.	
	(b)	Mention with proper diagram, the position of Fermi level in intrinsic an extrinsic (both donor and acceptor) semiconductors. GUNP	
7.	(a)	Explain the working principle of Dubulance III	4
	(b)	Draw the block diagram of Fiber optics communication Link and explai	n 4
	(c)	Calculate the numerical aperture and acceptance angle of a fiber with core index of 1.54 and a cladding index of 1.50.	a 2
8.	Write	e short notes on any two:	2
	(a)	Cooper pair	
	(b)	Type-I and Type-II superconductors	
	(c)	Schottky defect and Frenkel defect	
	(d·)	Population inversion.	
	e (f.)		