Registration No. :								
Total number of printed pages – 2							В.	Tech
							BSCP	1206

Third Semester Back Examination – 2014 PHYSICS – II

BRANCH(S): BIOTECH, MM, MME

QUESTION CODE: L311

Full Marks - 70

PAL LIBRO

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) What is Meissner effect?
- (b) What is Fermi energy? Give its mportance.
- (c) The magnetic flux density in a cyclotron is 1.5 T. This field is used to accelerate protons. Find the cyclotron frequency.
- (d) Define the term reciprocal lattice.
- (e) Mention the merits of semiconductor laser.
- (f) What are nano particles?
- (g) What are color centers?
- (h) Mention any four applications of radio isotopes.
- (i) Which type of emission takes place in case of LED?
- (j) What is the role of non-uniform and time varying magnetic field in betatron?
- (a) With a neat diagram write down the principle and working of a Cockcroft Walton accelerator.
 - (b) What are the advantages and disadvantages of drift tube linear accelerators?
 Write an expression for the length of the nth tube in terms of the length of its first tube.
 5

3.	(a)	Derive Bragg's law.	5
	(b)	A crystal plane cuts the crystallographic axes at 2,3, 5 units respective Find its Miller indices.	ly. 5
4.	(a)	Write a short note on carbon nano tube (CNT). Give some applications both SWNT and MWNT.	of 5
	(b)	What do you mean by compound semiconductor? Give few examples.	5
5.	(a)	What is Cooper pair and how is it formed?	5
((b)	What do you mean by hard and soft superconductors?	5
6.	(a)	Explain why population inversion is a necessary condition for causin stimulated emission.	ng 5
	(b)	Describe the basic construction of an LED.	5
7.	(a)	Mention with proper diagram, the position of Fermi level in intrinsic are extrinsic (both donor and acceptor) semiconductors.	nd 4
	(b)	Explain the working mechanism of a He- Ne Laser. What are the limitation of a He- Ne Laser.	on 4
	(c)	Calculate the transition temperature and critical fields at 0K, for a certal specimen, the critical fields are 2.8×10^5 A/m, 5.4×10^5 A/m for 14K are 13 K respectively.	
8.	Writ	te short notes on any two of the following:	:2
	(a)	Step - index fiber and graded - index fiber	
	(b)	Type - I and Type - II superconductors	
	(c)	FOCL	
	, (d)	Quantum dots.	