|--|

Total number of printed pages – 3

B. Tech BEES 2211

Third Semester Back Examination – 2014 NETWORK THEORY

BRANCH(S): AEIE, CSE, EC, EEE, EIE, ELECTRICAL, ETC, IEE, IT

QUESTION CODE: L 332

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

- 2×10
- (a) Determine 'Vth' in the circuit given below:

- (b) Check the positive realness of the function. : $y(s) = \frac{s^2 + 2s + 20}{s + 10}$
- (c) A two-port network is defined be the relation I₁ = 2V₁+V₂, I₂ = 2V₁ + 3V₂. Find the value of h₁₁ and h₁₂.
- (d) Write the properties of a tree.
- (e) Calculate the transfer function of the given network.

- (f) What are different methods to find out inverse laplace transform?
- (g) How average value is found from fourier series?
- (h) What are critical frequencies? Why they are so called?
- (i) Distinguish between steady state and transient response.
- (j) What is the relation between ramp function and parabolic function?
- 2. (a) If f(t) = sint and is perodic function. Find out its laplace transform.
 - (b) Obtain the pole zero plot and hence the time domain response for the given network function.

$$I(s) = \frac{s}{(s+2)(s^2+2s+2)}$$

- (a) Design the 'T' & 'Π' section of a prototype High pass filter having cut-off frequency of 20 kHz and design impedance 460 Ω. Find its characteristics impedance and phase constant at 25 kHz. Also find the attenuation at 4 kHz.
 - (b) Verify Reciprocity theorem across A-B. 5

 In the circuit of the figure shown below, find the expression for the transient current and the initial rate of growth of the transient current.

5

5

5. (a) Calculate the power across 10Ω resister.

- (b) Describe the graphical procedure for finding time domain behaviour from pole zero plot.
- (a) What are the various types of interconnections possible in 2 port network?
 - (b) Calculate half power freq, resonant freq., bandwidth and Q-factor for series RLC circuit with R = 0.2 ohm, L = 100 m H and $C = 50 \mu$ F.
- (a) Synthesize the given network function in the first form of Cauer.

$$Z(s) = \frac{(s+2)(s+5)}{(s+1)(s+3)}$$

- (b) The Z-parameter of a two port network are $Z_{11}=25\Omega$, $Z_{12}=50\Omega$, $Z_{21}=Z_{22}=75\Omega$. Find the port currents i_1 and i_2 when a 200 source is connected at port-1 and a 50Ω resister at port-2.
- (a) A DC voltage of 20V is applied in a R-L circuit where R=5 ohms and L=10H.
 Find the
 - (i) Time constant
 - (ii) The maximum value of stored energy
 - (b) Explain why the current in a pure inductance cannot change in zero time.

5

5

5