Reg	jistra	tion No. :		12.11	K. **			- ener	ar u	
Tota	al nu	mber of pri	nted pag	jes – 3	•					B. Tech
		-								CS 2208
		Thire	Seme	ster	Back	Exam	inatio	n – 201	4	
		. D	ATABA	SEM	ANAC	SEMEN	NTSYS	STEM		
				BRA	NCH	: MEC	Н			
				UEST	ION C	ODE : L	343			
		sound an		Fu	ıli Mar	ks – 70	NTR	AL LIBR		- 1 -
				Ti	me : 3	Hours	101	180	1	
	Ans	swer Quest	ion No. 1	which	is com	pulsory	and an	y five f	the re	st.
		The	igures in	the rig	ht-han	d marg	in indica	te manks	•	-32 -1
1.	Ans	wer the foll	owing qu	estion	s:		ohu s			2×10
	(a)	The exterr particular		•				rrespond	ence be	tween a
	(b)	The number								
	(c)	In E-R diag		r. was a said to	Control State of the Control of				rectangl	e where
	(d)	and is	an exam	ple of c	data de	finition l	anguag	e comma		
	(e)	Armstrong	's axioms	are_	a	ind				
Sec	(f)	Normaliza produce si								
	(g)	In the		50				41		

converted into normalized form that can be more easily manipulated.

	(h)	Atomic transaction is a transaction in which either with the transac-							
	` '	tion are executed to completion or are performed.							
	(i)	A transaction is a sequence of and actions that are grouped							
		together to form a database access.							
	(j)	Shadow paging technique maintains two page tables during the life of a							
		transaction namely (a) (b)							
2.	(a)	Discuss the role of a following personnel in the database environment: 5							
		(i) Database administrator.							
		(ii) Application developer.							
		(iii) End users.							
	(b)	Discuss the concept of data independence and explain its importance in a							
		database environment. 5							
3.	Exp	lain the following with example:							
	(i)	Data manipulation language (DML).							
	(ii)	Data definition language (DDL).							
	(iii)	Transaction control statements (TCS).							
	(iv)	Data control language.							
	(v)	Data administration statements.							
4.	(a)	Write the procedure to transform an E-R diagram to relations.							
	(b)	Discuss the basic concepts of E-R model with example.							
5.	Cor	Consider the following Schema:							
		Product (Maker, Model, Type)							
		PC (Model, Speed, RAM, HD, CD, Price)							
		Laptop (Model, Speed, RAM, HD, Screen-size, Price)							
		Printer (Model, Color, Type, Price)							
	or p and pro	Product relation gives the manufacturer, model number and type (PC, Laptop printer) of various products. Model numbers are unique over all manufacturers a product types. The value of color in Printer relation is true if the printer duces color output.							
	Wri	te the following queries either in relational algebra or in SQL: 2.5×4							

(a) Which manufacturers make laptops with a hard disk of at least 40GB?

- (b) Find the model number and price of all products (of any type) made by the manufacturer DELL.
- (c) Find the model number of all color laser printers.
- (d) Find those manufacturers that sell Laptops, but PC's.
- 6. (a) Consider the relation R (A, B, C, D, E, G) with a set of functional dependencies F = {AB → C, AC → B, AD → E, B → D, BC → A, E → G}. Is the decomposition of R into R₁ (A, B), R₂ (B, C), R₃ (A, B, D, E) and R₄ (E, G) lossless and/or dependency preserving?
 - (b) Given a relation R (A, B, C, D, E) with a set of functional dependencies F = {A → B, BC → D, D → BC, DE → Φ}. Decompose R into a set of 3NF relation sobjects that are both lossless and dependency preserving.
 5
- What is concurrency control? What are its objectives ? Explain different concurrency control protocols stating the advantages and disadvantages of each.
- 8. Write short notes on any two:

5×2

10

- (a) Serializability.
- (b) Database recovery.
- (c) Database failures.