GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022
--

SM19002034

Registration No:												Γ					
Total Number of Pages : 2 M.TECH M.TECH 2 ND SEMESTER (AR 17) SUPPLEMENTARY EXAMINATIONS, APRIL/MAY 2019 ADVANCED HEAT TRANSFER II Branch: TE, Subject Code:MTEPC2020 Time: 3 Hours Max Marks : 70																	
<u>PART-A</u> (10 X 2=20 MAR)																	
1. Answer the following questions. a) What are the generally accepted values of critical Reynolds number for (a)flow over a flat																	
	plate(b)flow in a tube?																
	b)	Can we have Nusselt nur	mber l	ess tha	in one'	? Justif	y.										
	c)	What is Fick's Law an	d give	e anal	ogy w	ith Fo	urier's	s Law'	?								
	d)	Under what condition,	the ef	ffectiv	veness	NTU	methe	od is p	referr	ed ov	er LM	ITD) m	eth	nod a	s a	
		method of analysis of l	heat e	xchan	ger												
	e)	What is critical heat flu	ux in I	boilin	g? Wł	nat is i	ts imp	ortanc	e?								
	f) Draw the laminar and turbulent velocity boundary layer for natural convection on a vertical plate.																
	g) What is mass diffusivity? What is its dimension?																
	h) Write down the N-S equations for incompressible viscous liquids and explain the terms in it.																
	i)	In a fully developed reg	gion of	f flow	in a c	ircula	tube,	will the	he vel	ocity p	profile	ch	ang	șe in	n the	flow	
		direction? How about the	e temp	eratur	e profi	le?											
	 j) How does a cross flow heat exchanger differ from a counter flow one? <u>PART-B</u> (5 X 10=50 MARKS) 																
 Answer any five questions from the following. a) What do you mean by Von Karman's integral method? How is it used in deriving heat transfer coefficient for flow over a flat plate? b) Explain the principle of dimensional homogeneity. How is it utilized in deriving dimensional 								[5]									
		groups?												[5]			
3.	a) Classify and explain different methods of boiling.b) Find the location and magnitude of maximum velocity in the boundary layer formed on a heated or cooled vertical plate .							or	[5] [5]								
4.) What is limitation of the LMTD method? How ε-NTU method is is superior to correction factor- MTD method?											[5]				
	b) The condenser of a large steam power plant is a heat exchanger in which steam is condensed to liquid water. Assume the condenser to be a shell-and-tube heat exchanger consisting of a single shell and 30,000 tubes, each executing two passes. The tubes are of thin wall construction with D=25 mm, and steam condenses on their outer surface with an associated convection coefficient of $h_0=11000 \text{ W/m}^2$ K. the heat transfer rate that must be effected by the exchanger is $q=2\times10^9$ W, and this is accomplished by passing cooling water through the tubes at a rate of 3×10^4 kg/sec. the water enters at 20° C while the steam condenses at 50° C. What is the temperature of the cooling water emerging from the								[5]								
		ndenser? What is the requi								2	, -		0		<i>.</i>		

5. a) Differentiate between Reynolds Analogy and Colburn Analogy.

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR - 765022

SM19002034

b) In a refrigeration system brine solution having viscosity 16.5 N-s/m² and the thermal conductivity [5] 0.85 W/m-K is flowing through a long pipe 2.5 cm inner diameter at a velocity of 6.1 m/s. under these conditions the heat transfer coefficient was found to be 1135 W/m²-K for a brine temperature of -1° C and pipe temperature of 18.3°C. Find the temperature rise of brine per meter length of pipe if the velocity is doubled and same heat transfer takes place. Assume Specific heat of brine is 3768J/kg-K and the density is 1000 kg/m³. Assume fully developed flow .

6.	a)	State physical interpretation of Eckert number, Grashoff number, Schmidt number and Lewis	[5]
	nuı	nber	[5]
	b)	Explain Fick's law of diffusion. What is mass diffusivity? What is its dimension?	[5]

7. a) Show that for a parallel flow heat exchanger $\in = \frac{1 - exp[-NTU(1+R)]}{(1+R)}$ [5] b) Find the location and magnitude of maximum velocity in the boundary layer formed on a heated or cooled vertical plate.

8.Write short notes on :	[5]
a) Regimes of boiling	[5]
b) Evaporative cooling	[-]

==0==