GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

SM19002017

Registration No:															
Total Number of Pages : 1 M.TECH															
M.TECH 2 ND SEMESTER (AR 17) SUPPLEMENTARY EXAMINATIONS, APRIL/MAY 2											IAY 2019				
ADVA									MICS						
	Bra	nch: '	ΓE, S	ubjec	t Cod	e:MT	EPC2	2010				-			
Time: 3 Hours								Max Marks : 70							
<u>PART-A</u>							(10 X 2=20 MARKS)								
1. Answer the following questiona) Write down the Maxwei		notion	~												
				rov?											
b) What do you mean by equi-partition of energy?c) Explain through a suitable example the difference between the first and second law efficiencies.															
d) What do you mean by compressibility factor and what is the value of it for ideal gas?															
e) A refrigerator removes 1.5 kJ from the cold space using 1 kJ work input. How much energy goes															
into the kitchen, and what is its coefficient of performance?															
f) Define fugacity.															
g) Explain the concept of p					ropy.										
h) Explain the concept of Helm Holtz free energy.															
i) Define adiabatic flame to															
j) Difference between exergy and energy. PART-B (5 X 10=50 MA								-50 M A	RKS)						
Answer any five questions from	n the f								(5	<u> </u>	-50 MIA	IXIX ()			
2. A steam turbine has steam f				te of 5	skg/s e	ntering	g at 5 I	MPa ar	nd 500	^o C and	d leavi	ing [10]			
at 0.2 MPa and 140°C. During flow through turbine a heat loss of 600kJ/s occurs to the															
environment at 1 atm and 25°C. Determine															
i) the availability of stear				ne, ii) the t	urbine	outpu	t iii)t	the ma	ximun	n possil	ble			
turbine output, and iv)				<i>.</i> .	C 1' CC	. 1 •	1 6	1	1	1		[0]			
3. a) Write down about Maxwell-Boltzmann distribution of different kind of molecular speeds.										$n \neq 0.74$	[3]				
 b) Determine the Fugacity of pure water for the following case. Assume Fugacity coefficient 0.74 Saturated Vapour at 100°C b) Saturated liquid at 100°C c) Compressed liquid at 100°C and 200 										and 2001	a) [7] bar				
d) Superheated vapour at 100°C and 0.5 bar e) Saturated Vapour at 350°C. f) Super cooled vapour										our					
at 90 OC, 1bar. Assume i				-)		· • • • • •			-)~-r						
4. a) Is it possible to perform an				s with	a close	ed syste	em yet	havin	g entro	py cha	ange nil	? [4]			
b) Enclosed in a perfectly insulated and smooth piston-cylinder assembly is a 20 kg mass of air. And															
is then allowed to expand adiabatically from 500 kPa, 353K till its volume is doubled and temperature															
becomes equal to 278 K- th		•				•				maxın	ium wo	ork			
availability b) change in availa 5. a) From T – ds equation deriv	-			-	on proc	ess c)	irreve	rsidiiit	у.			[5]			
-	-				ation							[5]			
b) Give the expression for first and second T – ds equation. 6. a) Derive the equation $(\delta Cp/\delta p)T = -T(\delta 2V/\delta T2)$												[5]			
b) Briefly explain Fermi Dirac and Bose Einstein statics												[5]			
7. a) Please show, By the help of Partition functions and their properties $Z = Z lZ ll$ Where Z is									$z \in Z$ is t						
partition function for the	he tota	al syst	em Z	l & 1	Z ll a	re the	partit	ion fu	nction	of w	eakly n	on			
interacting parts	_	-	~									r (1			
b) Using Maxwell relation,	Prove	Cp >	\mathcal{L}_{v}									[4]			
8. Write Short notes on	Enar			nninai	nla							[5]			
a) Entropy maximum Vs b) Gibbs Free Energy Vs				-	-	nle						[5]			
b) Globs File Energy VS	,. 11011	monz	1100 1	nergy	Princi	PIC						[~]			

==0==