Registration no:											
------------------	--	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 2

•

3rd Semester Regular / Back Examination 2015-16 MATHEMATICS-III **BRANCH: All BTech** Time: 3 Hours Max marks: 70 Q.CODE: T176

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions: (2 x 10)
a) For
$$u = e^x \cos y$$
 find out v such that $f(z) = u + iv$ will be analytic.
b) Determine the image of $y = 1$ under the mapping $w = z^2$.
c) Find all solutions of sin $z = 1000$
d) Find the principal value of $(1+i)^{1-i}$.
e) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n(n+3)}{4^n (n+1)} (z-i)^n$
f) Find the residue of $\frac{z^4}{z^2 - iz + 2}$ at each of its singularities.
g) Solve $u_{xx} = 0$
h) Solve $\sqrt{p} + \sqrt{q} = 1$
i) Solve $u_x - u_y = 0$ by the method of separating the variables.
j) Determine the nodal lines of the solution u_{23} of the two dimension wave equation for a square membrane of side 1.
Q2 a) Integrate $|z| + z$ from 1 to *i* along the unit circle.
b) Find the Taylor series of the function $\frac{1}{z}$ at the centre 3*i* and determine its radius of convergence
Q3 a) i) Integrate the function $\frac{15z+9}{z^3-9z}$ counterclockwise around the path $C:|z-3| = 4$ using the residue integration method.
ii) Evaluate $\int_{-\infty}^{\infty} \frac{dx}{1+4x^4}$

B.TECH BSCM1205

b) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{13 - 5\sin\theta}$$
 (4)

- **Q4** a) Find the linear fractional transformation that maps 0, i, -i onto 2i, ∞ , (5) $\frac{1}{2} + i$ respectively.
 - **b)** Solve the partial differential equation (y-z)p + (x-y)q = (z-x) (5)

(5)

- Q5 a) Solve the PDE: $(2D_x + D_y + 1)(D_x^2 + 3D_xD_y 3D_x)z = 0$ (5)
 - **b)** Solve the PDE: $qz p^2 y q^2 y = 0$
- **Q6** a) Find u(x, t) of the string of length $L = \pi$ when $c^2=1$, the initial velocity is zero and the initial deflection is $0.1x(x \pi)$. (5)
 - **b)** Transform the equation $u_{xx} + 6u_{xy} + 9u_{yy} = 0$ to normal form using (5) suitable transform and solve it.
- **Q7 a)** Find the temperature u(x,y) in a bar of silver (length 10 cm with constant cross section of area with c = 1) that is perfectly insulated laterally, whose ends are kept at temperature 0°C and whose initial temperature in (°C) is f(x) = x(10 x)
 - **b)** Find the temperature u in a plate r < 1, y > 0 if the segment -1 < x < 1 is (5) kept at 0°C and the semicircular boundary is kept at constant temperature u_0 .
- **Q8 a)** Show that the only solution of Laplace equation in spherical polar coordinates depending only on r is u = c/r + d, where c and d are constants. Using this find the electrostatic potential between two concentric spheres of radii $r_1 = 2$ cm and $r_2 = 4$ cm kept at the potential 220 volts and 140 volts respectively.
 - **b)** Solve the given equation by Laplace Transform (5) $x \frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = xt, \ u(x,0) = 0, \ u(0,t) = 0$