GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

												RM19002081	
Registration No:													
Total	Number of Pages: 2 M.TECH 2 ND SEME	В	BEAR	ING	EGUI AND Subjec	LUB	RICA	TION	1	IS, A	PRIL/	M.TEC MAY 20	
,	Time: 3 Hours	Draii	icii: IV	ID, S	ubjec	ı Cou	e:iviiv.	IDFE.	2043		Max	Marks	: 70
			PA.	RT-A	<u>.</u>					()	10 X 2=	=20 MAR	KS)
1. Ans a)	wer the following quest Why hydrostatic journ		ng is c	alled	externa	lly pre	ssurize	ed bear	ring?				
b)	What is meant by hydr	odynam	ic lub	ricatio	on?								
c)	What are the commonl	y used n	nateri	als for	r sliding	g conta	act bea	rings?					
d)	Define basic static load	d capacit	ty, bas	sic dy	namic 1	oad ca	pacity	, eccer	ıtricity	ratio	and life	e of	
	bearing.												
e)	Explain the following terms as applied to journal bearings: (a) Bearing characteristic number;												
	and (b) Bearing modulus.												
f)	Name some of the Wear resistance material (metallic & non-metallic) for engineering												
	applications.												
g)	How the sliding speed	effect or	n co-e	fficie	nt of fr	iction?	,						
h)	What do you mean by	What do you mean by surface contaminants? What is their effect on surface contacts?											
i)	What is the difference	between	air fi	lm lul	oricatio	n and	oil lub	ricatio	n?				
j)	What are the propertie	s of a sli	ding o	contac	t bearii	ng mat	erial?						
	• •		_	RT-B						(5 X 10=	=50 MAR	KS)
Answe	er any five questions fro	m the fo	ollowi	ng.	•					`			ŕ
	Explain different Theoric State approaches to Fric				ear Pre	ventio	n.						[5] [5]
Q.3 a)	State the advantages in p	re loadii	ng of l	oearin	gs and	it effe	cts.						[5]
	What are the properties r	equired 1	for sel	ection	n of Be	aring N	Materia	als.					[5]
Q4 a)	Derive an expression is sommerfeld and half so					of an	infini	itely lo	ong jo	urnal	bearing	g. Use fu	11 [5]
b)	A full journal bearing is	s having				cificati	ons:						[5]
	Journal diameter = 100 Length to diameter ratio												
	Radial clearance=0.025	mm											
	Journal speed = 3000rp Operating eccentricity		6										
	Average viscosity of lu			Pa s									
	Assuming the bearing			-	_	nd usi	ng ful	ll som	merfe	ld &	half so	ommerfel	d
Q5	boundary conditions fir	id bearin	ig cha	racter	istics.								
a)	Explain the working pr	•	•				_	_					[5]
b)	Derive the equation for	pressure	e actır	ig on l	nydrosi	tatic ar	ınular	tnrust	bearin	g.			[5]

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

RM190020)81
Q6 a) State and explain different types of lubricant and its applications. What are the properties of a good lubricant?	[5]
considerations in brief as related to size, clearance and load.	[5]
 Q7. a) Derive Petroff's equation for lightly loaded bearing. b) The following data refers to a 3600 hydrodynamic bearing: Journal diameter = 40 mm, Bearing length = 20 mm, Radial load = 6.5 kN, Journal speed = 1500 r.p.m., Radial clearance = 0.0, mm Oil viscosity = 25 cP. Find the minimum oil film thickness, friction coefficient, oil flow and power lost in churning. 	[5] [5]
Q8 Write short notes on: a) Bearing Materials b) Significance of Stricbeck curve in lubrication	[5] [5]

==0==