GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022	GIET	MAIN	CAMPUS	AUTONO	MOUS C	GUNUPI	UR – 1	765022
--	------	------	--------	--------	--------	--------	--------	--------

	(JET MAIN CA	MPUS	AUTON		JS GU	NUPU	(- 765	5022		RM19002	016
	Registration No:										KIVI19002	.040
Τα	otal Number of Pages : 2 M.TECH 2 ND SEM	ESTER (AF	ANCI	ED HE	AT T	RANS	SFER	II	NS, AP		M.TECH MAY 201	
	Time: 3 Hours		,	J			-		M	ax Ma	arks : 70	
			ART-	A					(1	0 X 2=	=20 MARK	(S)
1. a)	Answer the following quest State the five methods w		lable	for eval	uation	of co	nvecti	on hea	at transf	fer		
	coefficient.											
b)	What do you mean by th	ermal bounda	ary lay	yer? Ho	w is tl	nis dif	ferent	from 1	nydrody	namic	boundary	
	layer?											
c)	State Reynolds analogy an	nd explain its	applic	ation in	conve	ctive h	neat tra	nsfer.				
d)	Write down two-dimensional momentum and energy equation in cylindrical coordinate system.											
e)	What is the importance of	critical heat f	lux?									
f)	Write Fick's law of diffus	ion.										
g)	What is the magnitude of	f Nusselt nur	nber f	or lamir	nar flo	w in a	tube o	consid	ering co	onstant	t heat flux	
	case? What is the value of	constant wall	l temp	erature	plate?							
h)	What do you mean by fou	ling factor?										
i)	What are the heat transf	fer modes are	e invo	olved in	heat	excha	nger f	or hea	at transf	fer		
	augmentation?											
j)	State Buckingham π theor	em. What are	its me	erit and	demer	its?						
Ar	nswer any five questions fi		<u>ART-</u> wing.	- <u>B</u>					(5	X 10=	=50 MARF	(S)
Q.: a)	2. Derive the Nusselt number	expression for	r cons	tant hea	t flux o	case fo	or lam	inar fl	ow in tı	ube.		[5]
b)	With the help of Bucking	ham π -theorem	m sho	w that	for fo	rced co	onvecti	on he	at transf	er.		[5]
Q.: a)	3. Writing mass, momentum a transfer using dimensionles			s, derive	e the C	rashot	ff num	ber foi	r natural	l conve	ection heat	[5]
b)	Air at 20°C and moving at	-		oy an iso	otherm	al stea	m heat	ed pla	te at 11	0°C. 0	.5m length	[5]
- /	and 0.5m width. Find the a			-				-			-	

convection coefficient, thermal boundary layer thickness and hydraulic boundary layer thickness?

Q.4.

- a) Differentiate between Reynolds Analogy and Reynolds-Colburn Analogy. [5]
- b) What would be the effectiveness of counter flow heat exchanger if $C_{min}/C_{max}=0$ and $C_{min}/C_{max}=1$ [5]

RM19002046

[5]

[5] [5]

Q.5.

Air at 27°C and 1 bar pressure flows over a flat plate with a velocity of 2m/s. Estimate(i)the boundary [10] layer thickness at a distances of 20cm and 40 cm from the leading edge of the plate (ii) the mass flow that flows between x=20 cm and x=40 cm. Take μ of air at 27°C as 1.85×10-5 kg/ms. Assume unit depth in z-directions. If the plate is heated over its entire plate (iv) compute the drag force exerted on the first 40 cm of the plate. Properties of air at 316.5K are v=17.36×10-6 m2/s, k=0.02749 W/mK, Pr=0.7,cp=1006 J/kgK.

Q.6.

a) Show that for a parallel flow heat exchanger $\in = \frac{1 - exp[-NTU(1+R)]}{(1+R)}$ [5]

b) In the heat transfer relation Q=UA Δ Tlm for a heat exchanger, what is Δ T lm called? Derive the [5] expression for parallel flow heat exchanger.

Q.7.

a) How is the mass transfer coefficient evaluated by dimensionless analysis.

b) Air at 1 atm, 25°C, containing small quantities of iodine flows with a velocity of 5.18 m/s inside a 3.048 ^[5] cm diameter tube. Determine the mass transfer coefficient for iodine transfer from the gas stream to the wall surface. If C_m is the mean concentrate of iodine in kg mol/m³. In the air stream, determine the rate of deposition of iodine on the tube surface where the iodine concentration is zero. Take kinematic viscosity of air is 1.58x10⁻⁵ m²/s and D for air-iodine system at 1 atm, 298K is 0.826x10⁻⁵ m²/s.

Q.8. Write short notes on:

- a) Equimolar counter diffusion
- b) Fick's law of diffusion

==0==