GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

RM19002021

Registration No:												
Total Number of Pages : 1 M.TECH M.TECH 2 ND SEMESTER (AR 18) REGULAR EXAMINATIONS, APRIL/MAY 2019												
ADV				EERI					MICS	5		
	Bra	nch: '	TE, S	Subjec	t Cod	e:MT	EPC 2	2010				
Time: 3 Hours <u>PART-A</u>									Max Marks : 70 (10 X 2=20 MARKS)			
1. Answer the following questiona) Define compressibility factor												
a) Define compressibility factorb) Explain through a suitable ex		• the d	ifferer	nce the	first a	nd seco	and la	weffic	iencie	e		
c) What is mean free path?	Aumpi	, the u			inst a		Jila la					
d) What do you mean by fugacity?												
e) Explain the concept of Helm Holtz function.												
f) Define thermodynamic probability in relation to entropy.												
g) What do you mean by equipartition of energy?												
h) Write down the Maxwell equations.												
 i) Write a general relation for Joule-Thompson coefficient. j) Prove that C_p of an ideal gas is a function of temperature only. 												
j) Prove that C_p of an ideal gas	is a fu			•	ture on	ly.			(1	V 10		(1)
Answer any five questions from	n tha f	-	<u>RT-B</u>	-					(:	5 X 10=	=50 MARK	2)
				ate of	5ka/s e	nterin	σat5	MPa a	and 50	0^{0} C and	d leaving	[10]
Q2. A steam turbine has steam flowing at steady rate of 5kg/s entering at 5 MPa and 500°C and leaving [10] at 0.2 MPa and 140°C. During flow through turbine a heat loss of 600kJ/s occurs to the environment												[IU]
at 1 atm and 25°C. Determi												
i. the availability	of stea	m at ir	ilet to	turbin	e,							
ii. he turbine outpu	ıt											
iii. the maximum p	ossible	e turbii	ne out	put, an	d							
iv. Irreversibility.												
Q3. a) Write down about Maxwe											(074)	[3]
b) Determine the Fugacity Saturated Vapour at 100 ^C												[7]
d) Superheated vapour at												
at 90 OC, 1bar. Assume i					luiulee	, vupo	ui ui .	50 C.	1) 54		ica vapour	
Q4. a) Is it possible to perform a					n a clos	sed sys	stem y	et havi	ng ent	ropy ch	ange nil?	[4]
b) Enclosed in a perfectly in												[6]
it is then allowed to exp	and a	diabati	ically	from	500 kl	Pa, 35	3K ti	ll its v	volume	e is do	ubled and	
temperature becomes equ												
maximum work availabilit	-	-		-			-	-			-	
Q.5.a) A certain gas has $C_P=1.968$ and $C_V=1.507$ Kj/kg K. find its molecular weight and the gas con												[5]
A constant volume chamber of 0.3m^3 capacity contains 2 kg of this gas at 5 ^o C. heat is transferre the gas until the temperature is 100 ^o C. Find the work done, the heat transferred, changes in												[5]
internal energy, enthalpy and entropy.												
b) From $T - ds$ equation der			=tVβ	2/ K.								
Q.6.a)Derive the equation $(\delta Cp/\delta p)T = -T (\delta 2V/\delta T2)$												
b) Briefly explain Fermi Dirac and Bose Einstein statics												[5]
Q.7.a) Write down about Maxwell Boltzmann distribution for different kind of molecular speed.												[5]
b) Derive the Clausius Clape	eyron e	equation	on									[5]
Q.8. Write short notes on											[5]	
a) Nernst Lawb) Principle of Increase of entropy												[5]
b) I incipie of increase of en	пору		=	==0==								
				-								