GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

RM19002001

										RIVE	19002001	
Regist	ration No:											
									1			
Total Num	ber of Pages : 1									M.T	ЕСН	
M.T	ECH 2 ND SEMI	ESTER ((AR 18)	REGU	LAR	EXAN	/INA	TION	IS. AI			
			ADVA	NCED A	ALGO	RITH	IMS		,			
			ch: CSE					2010				
Time: 3 H	Tours	Dian		, susje						Max	Marks : 70	
			PART-A					(10 X 2=20 MARKS)				
1 Answer t	he following ques	tions	I ANT.	A					()	$10 \land 2 - 20 $ W.	IANNS)	
	sts the sorting algo		at can be	applied	in a ora	anh						
	ch graph algorithm						h in D	iikstra	appro	ach and why	v it is	
used				-8		F		-j~			,	
	te down the steps of	of greedy a	approach	es.								
	mplify a strongly c	••••	. .									
e) How	v can we character	ize a maxi	imum ma	atching a	lgorith	m?						
, ,	ed warshall algori			on of Dy	namic	progra	mmin	g. Justi	ify it.			
0,	e Chinese remaind											
	erentiate between											
	v linear programmi						ing?					
j) Whe	ere do we use Four	ier transfo		-	design'	?						
.		41 <i>C</i> .	PART	<u>-B</u>					(:	5 X 10=50 M	IARKS)	
	five questions from the shortest path is			ing Diik	atro ala	orithm					[10]	
2. Filld	l the shortest path		ioue a us	ing Dijk	stra alg	onunn					[10]	
	(B) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	L									
1	2			3								
~		11		V.	5							
AL	1 /		4		9							
			1	S								
	2	Y	-	5								
	2	(E)	8								
3. a) H	low DFT is differen	nt from Fl	FT expla	in with e	xample	2.						
,	xplain Edmond's E		-				ng patl	n with	an exa	ample.	[5]	
	ind all solutions of									I	[5]	
b)W	rite Ford-Fulkerso	on Method	d algorith	nm to co	mpute	maxim	um flo	ow wit	h an e	xample	[5]	
5. a)Sta	ate and explain ma	x- cut mi	n theorem	n.	_					_	[5]	
b) D	efine Chinese rem	ainder the	eorem. W	hy it is r	equired	d in alg	gorithn	n desig	gn?		[5] [5]	
	simplex method to	o maximiz	the fol	lowing o	bjectiv	e funct	ion				[5]	
	X1-X2+2X3										[10]	
5	ject to the constrain	nts										
	$+X_2 <= 10$											
-	$2X_2 - 2X_3 <= 20$											
	2X ₃ <=5 ERE X ₁ ,X ₂ ,X ₃ >=0											
	xplain point interpreter		ethod w	ith an ev	amnle						[5]	
	ind the optimal par					nce of	matrix	<30.3	5.15 5	5.10.20 25>	[5]	
	efine amortized and										[5]	
	xplain the approxi										[5]	
,			- '	==0==			-	1	-	C		